A373519
Expansion of e.g.f. exp(x/(1 - x^4)^(1/4)).
Original entry on oeis.org
1, 1, 1, 1, 1, 31, 181, 631, 1681, 60481, 687961, 4379761, 19982161, 802740511, 13848694861, 131732390791, 873339798241, 38385869907841, 894783905472241, 11506538747852641, 101612306808695521, 4824806928717603871, 142148609212891008421
Offset: 0
-
nmax = 25; CoefficientList[Series[E^(x/(1 - x^4)^(1/4)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2025 *)
-
a(n) = n!*sum(k=0, n\4, binomial(n/4-1, k)/(n-4*k)!);
A373518
Expansion of e.g.f. exp(x/(1 - x^3)^(2/3)).
Original entry on oeis.org
1, 1, 1, 1, 17, 81, 241, 3361, 32481, 183457, 2534561, 36903681, 325995121, 4808334961, 90981786897, 1126128625441, 18354227120321, 415821040873281, 6714588707173441, 122710186163310337, 3174234862391072721, 63597591858999638161, 1308604168710672673841
Offset: 0
-
nmax = 25; CoefficientList[Series[E^(x/(1 - x^3)^(2/3)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2025 *)
-
a(n) = n!*sum(k=0, n\3, binomial(2*n/3-k-1, k)/(n-3*k)!);
A373522
Expansion of e.g.f. exp(x * (1 + x^3)^(1/3)).
Original entry on oeis.org
1, 1, 1, 1, 9, 41, 121, -279, -1679, 1009, 259281, 1173041, 669241, -267141159, -1295686391, 10821721, 650092657761, 3480768830561, 17723446561, -2911516748764191, -17068971040559639, 427036022281, 21673592659354854681, 137752098937383025481
Offset: 0
A373680
Expansion of e.g.f. exp(x / (1 - x^3)^2).
Original entry on oeis.org
1, 1, 1, 1, 49, 241, 721, 16801, 204961, 1276129, 19968481, 417479041, 4522597201, 62399971921, 1685741065009, 28122880050721, 415551065616961, 12085752936331201, 281057646411506881, 4923299166925874689, 143004800073025326961, 4244797186148550210481
Offset: 0
A373539
Expansion of e.g.f. exp(x/(1 + x^3)^(1/3)).
Original entry on oeis.org
1, 1, 1, 1, -7, -39, -119, 841, 10641, 59473, -393679, -9119439, -77841719, 453247081, 17769103353, 210702481081, -1002688100959, -65813075987679, -1022777654395679, 3554736409105633, 413233827275657241, 8091508938651283321, -16214426267734966039
Offset: 0
A386721
Expansion of e.g.f. exp(x/(1 - 9*x^3)^(1/3)).
Original entry on oeis.org
1, 1, 1, 1, 73, 361, 1081, 93241, 912241, 4907953, 476295121, 7244922961, 58360393081, 6211842488281, 130899060524233, 1435239754046281, 164948740478252641, 4498516738183799521, 63300797606830713121, 7772118657831401082913, 262261735708117281036841
Offset: 0
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1 - 9*x^3)^(1/3)))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Sep 03 2025
-
nmax = 20; CoefficientList[Series[E^(x/(1 - 9*x^3)^(1/3)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2025 *)
-
a(n) = n!*sum(k=0, n\3, 9^k*binomial(n/3-1, k)/(n-3*k)!);
Showing 1-6 of 6 results.