A373524
Expansion of e.g.f. exp(x * (1 + x^4)^(1/4)).
Original entry on oeis.org
1, 1, 1, 1, 1, 31, 181, 631, 1681, -30239, -219239, -609839, 23761, 348686911, 2769787021, 8683865191, 519049441, -13487418759359, -125598814684559, -446790263130719, 15237796321, 1447967425273506271, 15403882866996490021, 61625443167286653271, 1295472977069041
Offset: 0
A373526
Expansion of e.g.f. exp(x * (1 + x^4)^(3/4)).
Original entry on oeis.org
1, 1, 1, 1, 1, 91, 541, 1891, 5041, -22679, 703081, 9397081, 59946481, 510926131, -1770628859, 28435376971, 879567081121, 1118967005521, 133425791669521, -153681150137039, 1206979480409761, 974131304609110411, -2730300052811686739, 68047061689139820211
Offset: 0
A373520
Expansion of e.g.f. exp(x/(1 - x^4)^(1/2)).
Original entry on oeis.org
1, 1, 1, 1, 1, 61, 361, 1261, 3361, 143641, 1829521, 12501721, 59922721, 2173048021, 44315751481, 478799701381, 3492321094081, 116722067432881, 3290135175240481, 50242015215929521, 508061488330088641, 16418736123292904941, 585427887134915295241
Offset: 0
-
nmax = 25; CoefficientList[Series[E^(x/(1 - x^4)^(1/2)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2025 *)
-
a(n) = n!*sum(k=0, n\4, binomial(n/2-k-1, k)/(n-4*k)!);
A373708
Expansion of e.g.f. exp(x * (1 + x^4)^2).
Original entry on oeis.org
1, 1, 1, 1, 1, 241, 1441, 5041, 13441, 393121, 10946881, 99902881, 559025281, 2335441681, 182348406241, 4382526067921, 48882114328321, 355837396998721, 5157802930734721, 312898934463543361, 7129755898022511361, 89524038506304371761, 773103613914955683361
Offset: 0
Showing 1-4 of 4 results.