cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373561 a(n) = (1/3)*n^5 + (1/2)*n^4 + (1/6)*n^3.

Original entry on oeis.org

0, 1, 20, 126, 480, 1375, 3276, 6860, 13056, 23085, 38500, 61226, 93600, 138411, 198940, 279000, 382976, 515865, 683316, 891670, 1148000, 1460151, 1836780, 2287396, 2822400, 3453125, 4191876, 5051970, 6047776, 7194755, 8509500, 10009776, 11714560, 13644081, 15819860
Offset: 0

Views

Author

Mats Granvik, Jun 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 34; Table[+1/3  n^5 + 1/2  n^4 + 1/6  n^3, {n, 0, nn}]
    p = 2; Table[Sum[Sum[Sum[Sum[If[GCD[x^p + y^p - z^p, n] == k, x^p + y^p - z^p, 0], {x, 1, n}], {y, 1, n}], {z, 1, n}], {k, 1, n}], {n, 0, nn}]
    LinearRecurrence[{6,-15,20,-15,6,-1}, {0,1,20,126,480,1375}, 35] (* Hugo Pfoertner, Jun 10 2024 *)

Formula

a(n) = n^3*(n+1)*(2*n+1)/6.
a(n) = n^2 * A000330(n).
Conjecture: a(n) = Sum_{k=1..n} Sum_{z=1..n} Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y,z), n) = k] * f(x,y,z), where f(x,y,z) = x^2 + y^2 - z^2.
G.f.: x*(1 + 14*x + 21*x^2 + 4*x^3)/(1 - x)^6. - Stefano Spezia, Jun 10 2024