A373575 Numbers k such that k and k-1 both have at least two distinct prime factors. First element of the n-th maximal antirun of non-prime-powers.
1, 15, 21, 22, 34, 35, 36, 39, 40, 45, 46, 51, 52, 55, 56, 57, 58, 63, 66, 69, 70, 75, 76, 77, 78, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 100, 105, 106, 111, 112, 115, 116, 117, 118, 119, 120, 123, 124, 130, 133, 134, 135, 136, 141, 142, 143, 144, 145
Offset: 1
Keywords
Examples
The maximal antiruns of non-prime-powers begin: 1 6 10 12 14 15 18 20 21 22 24 26 28 30 33 34 35 36 38 39 40 42 44 45 46 48 50
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Runs of prime-powers:
- length A174965
- min A373673
- max A373674
- sum A373675
Runs of non-prime-powers:
- length A110969
- min A373676
- max A373677
- sum A373678
Antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
Antiruns of non-prime-powers:
- length A373672
- min A373575 (this sequence)
- max A255346
- sum A373679
A356068 counts non-prime-powers up to n.
Programs
-
Mathematica
Select[Range[100],!PrimePowerQ[#]&&!PrimePowerQ[#-1]&] Join[{1},SequencePosition[Table[If[PrimeNu[n]>1,1,0],{n,150}],{1,1}][[;;,2]]] (* Harvey P. Dale, Feb 23 2025 *)
Comments