A373584 a(n) is equal to the number of shaded cells in a regular hexagon with side n drawn on a hexagonal grid.
1, 7, 13, 19, 31, 49, 67, 85, 109, 139, 169, 199, 235, 277, 319, 361, 409, 463, 517, 571, 631, 697, 763, 829, 901, 979, 1057, 1135, 1219, 1309, 1399, 1489, 1585, 1687, 1789, 1891, 1999, 2113, 2227, 2341, 2461, 2587, 2713, 2839, 2971, 3109, 3247, 3385, 3529
Offset: 1
Examples
a(3) = 19 - 6*1 = 13; a(4) = 37 - 6*3 = 19. o . o . o o . . o . o . . o . o . o . o . o . o . o . o . o o o . o o . . . o o . . . . . o o . . . o o o o o o o o o o o o o o o o o o o o o o o o o o o . o o . . . o o . . . . . o o . . . o . o . o . o . o . o . o . o o . . o . o . . o . o . o . o 1 7 13 19 31
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Nicolay Avilov, Members of the sequence a(1) - a(7).
- Nicolay Avilov, Problem 2663. Snowflakes (in Russian).
- Nicolay Avilov, Illustration a(13) and a(16)
- Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-3,1).
Programs
-
Mathematica
Table[6*Ceiling[n*(n - 1)/4] + 1, {n, 100}] (* Paolo Xausa, Jul 01 2024 *)
Formula
a(n+4) = a(n) + 12*n + 18.
a(n) = 6*ceiling(n*(n - 1)/4) + 1.
a(n) = 6*A054925(n) + 1.
G.f.: (1 + 4*x - 4*x^2 + 4*x^3 + x^4)/((1 - x)^3*(1 + x^2)). - Stefano Spezia, Jun 11 2024
E.g.f.: (exp(x)*(5 + 6*x + 3*x^2) - 3*cos(x) + 3*sin(x))/2. - Stefano Spezia, Aug 31 2025
Comments