cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A276150 Sum of digits when n is written in primorial base (A049345); minimal number of primorials (A002110) that add to n.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 7, 8, 8, 9, 9, 10, 4
Offset: 0

Views

Author

Antti Karttunen, Aug 22 2016

Keywords

Comments

The sum of digits of n in primorial base is odd if n is 1 or 2 (mod 4) and even if n is 0 or 3 (mod 4). Proof: primorials are 1 or 2 (mod 4) and a(n) can be constructed via the greedy algorithm. So if n = 4k + r where 0 <= r < 4, 4k needs an even number of primorials and r needs hammingweight(r) = A000120(r) primorials. Q.E.D. - David A. Corneth, Feb 27 2019

Examples

			For n=24, which is "400" in primorial base (as 24 = 4*(3*2*1) + 0*(2*1) + 0*1, see A049345), the sum of digits is 4, thus a(24) = 4.
		

Crossrefs

Cf. A333426 [k such that a(k)|k], A339215 [numbers not of the form x+a(x) for any x], A358977 [k such that gcd(k, a(k)) = 1].
Cf. A014601, A042963 (positions of even and odd terms), A343048 (positions of records).
Differs from analogous A034968 for the first time at n=24.

Programs

  • Mathematica
    nn = 120; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[# + 1] <= nn &]]; Table[Total@ IntegerDigits[n, b], {n, 0, nn}] (* Version 10.2, or *)
    nn = 120; f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Total@ f@ n, {n, 0, 120}] (* Michael De Vlieger, Aug 26 2016 *)
  • PARI
    A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); }; \\ Antti Karttunen, Feb 27 2019
  • Python
    from sympy import prime, primefactors
    def Omega(n): return 0 if n==1 else Omega(n//primefactors(n)[0]) + 1
    def a276086(n):
        i=0
        m=pr=1
        while n>0:
            i+=1
            N=prime(i)*pr
            if n%N!=0:
                m*=(prime(i)**((n%N)/pr))
                n-=n%N
            pr=N
        return m
    def a(n): return Omega(a276086(n))
    print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 23 2017
    

Formula

a(n) = 1 + a(A276151(n)) = 1 + a(n-A002110(A276084(n))), a(0) = 0.
or for n >= 1: a(n) = 1 + a(n-A260188(n)).
Other identities and observations. For all n >= 0:
a(n) = A001222(A276086(n)) = A001222(A278226(n)).
a(n) >= A371091(n) >= A267263(n).
From Antti Karttunen, Feb 27 2019: (Start)
a(n) = A000120(A277022(n)).
a(A283477(n)) = A324342(n).
(End)
a(n) = A373606(n) + A373607(n). - Antti Karttunen, Jun 19 2024

A373605 Sum of the even-indexed digits minus the sum of the odd-indexed digits in the primorial base representation (A049345) of n.

Original entry on oeis.org

0, 1, -1, 0, -2, -1, 1, 2, 0, 1, -1, 0, 2, 3, 1, 2, 0, 1, 3, 4, 2, 3, 1, 2, 4, 5, 3, 4, 2, 3, -1, 0, -2, -1, -3, -2, 0, 1, -1, 0, -2, -1, 1, 2, 0, 1, -1, 0, 2, 3, 1, 2, 0, 1, 3, 4, 2, 3, 1, 2, -2, -1, -3, -2, -4, -3, -1, 0, -2, -1, -3, -2, 0, 1, -1, 0, -2, -1, 1, 2, 0, 1, -1, 0, 2, 3, 1, 2, 0, 1, -3, -2, -4, -3, -5, -4, -2, -1, -3
Offset: 0

Views

Author

Antti Karttunen, Jun 18 2024

Keywords

Comments

Alternating digit sum in primorial base, starting with a positive sign for the rightmost (least significant) digit.

Examples

			A049345(85) = 2401, thus the sum of digits at even positions (with the rightmost digit having index 0) is 1+4 = 5, and at the odd positions 0+2 = 2, therefore a(85) = 5-2 = 3.
		

Crossrefs

Cf. A049345, A195017, A276086, A373606, A373607, A373830, A373831 (indices of multiples of 3).
Analogous sequences for bases 2-10: A065359, A065368, A346688, A346689, A346690, A346691, A346731, A346732, A055017.

Programs

  • PARI
    A373605(n) = { my(p=2, i=1, s=0); while(n, s += i*(n%p); n = n\p; p = nextprime(1+p); i = -i); (s); };

Formula

a(n) = A373606(n) - A373607(n).
a(n) = A195017(A276086(n)).

A373607 Sum of the odd-indexed digits in the primorial base representation (A049345) of n.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3, 4, 4, 2, 2, 3, 3, 4, 4, 2, 2, 3, 3, 4, 4, 2, 2, 3, 3, 4, 4, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4, 5, 5, 3, 3, 4, 4, 5, 5, 3, 3, 4, 4
Offset: 0

Views

Author

Antti Karttunen, Jun 18 2024

Keywords

Examples

			A049345(85) = 2401, and the sum of digits at the odd positions  (with the rightmost digit having index 0) is 0+2 = 2, thus a(85) = 2.
		

Crossrefs

Programs

  • PARI
    A373607(n) = { my(p=2, i=0, s=0); while(n, if(i%2, s += (n%p)); n = n\p; p = nextprime(1+p); i = !i); (s); };

Formula

a(n) = A276150(n) - A373606(n).
a(n) = A373606(n) - A373605(n).
Showing 1-3 of 3 results.