A373628 Triangle read by rows: T(n,k) is the number of occurrences of the periodic substring (0011)^k in the periodic string (000111)^n.
1, 1, 9, 1, 81, 81, 1, 351, 1377, 729, 1, 1035, 11421, 18225, 6561, 1, 2430, 62613, 223803, 216513, 59049, 1, 4914, 259119, 1813023, 3523257, 2421009, 531441, 1, 8946, 874071, 10978740, 37850409, 49069719, 26040609, 4782969, 1, 15066, 2525499, 53362800, 303255981, 657274419, 631883349, 272629233, 43046721
Offset: 0
Examples
The triangle begins as: 1; 1, 9; 1, 81, 81; 1, 351, 1377, 729; 1, 1035, 11421, 18225, 6561; 1, 2430, 62613, 223803, 216513, 59049; ... T(1,1) = 9 since there are 9 occurrences of (0011)^1 = 0011 in (000111)^1 = 000111: {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6}.
Links
- Wenjie Fang, Maximal number of subword occurrences in a word, arXiv:2406.02971 [math.CO], 2024. See Proposition 4.10 at page 9 in Fang.
Programs
-
Mathematica
T[n_, k_]:=SeriesCoefficient[(1-x)^3/((1-x)^4-9x(1+2x)^2y), {x, 0, n}, {y, 0, k}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}]//Flatten
Formula
G.f.: (1 - x)^3/((1 - x)^4 - 9*x*(1 + 2*x)^2*y).
Comments