A373629 a(n) = sum of all numbers whose binary expansion is n bits long, starts and ends with a 1 bit, and contains no 00 bit pairs.
1, 3, 12, 39, 131, 426, 1389, 4503, 14596, 47259, 152991, 495162, 1602521, 5186067, 16782828, 54310911, 175754731, 568755690, 1840534485, 5956098495, 19274345876, 62373103443, 201843619047, 653179698234, 2113733947681, 6840186809691, 22135309606524, 71631366769623
Offset: 1
Examples
For n=5, the terms of A247648 that are in the interval [16, 31] are 21, 23, 27, 29, and 31, so a(5) = 21+23+27+29+31 = 131.
References
- R. Grimaldi, (2012). Fibonacci and Catalan Numbers: An Introduction, page 80, Example 12.1.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..1000
- Iskender Ozturk, Walking paths.
- Index entries for linear recurrences with constant coefficients, signature (3,3,-6,-4).
Programs
-
Mathematica
LinearRecurrence[{3, 3, -6, -4}, {1, 3, 12, 39}, 30] (* Paolo Xausa, Jun 19 2024 *)
-
PARI
Vec(x/((1 - x - x^2)*(1 - 2*x - 4*x^2)) + O(x^40)) \\ Michel Marcus, Jun 16 2024
Formula
a(n) = a(n-1) + a(n-2) + F(n)*2^(n-1).
a(n) = 3*a(n-1) + 3*a(n-2) - 6*a(n-3) - 4*a(n-4).
a(n) = F(n)*(2^n-1) - Sum_{i=1..n-1} F(i)*F(n-i-1)*2^(n-i-1).
G.f.: x/((1 - x - x^2)*(1 - 2*x - 4*x^2)).
E.g.f.: 2*(exp(x)*(sqrt(5)*cosh(sqrt(5)*x) + 7*sinh(sqrt(5)*x)) - exp(x/2)*(sqrt(5)*cosh(sqrt(5)*x/2) + 4*sinh(sqrt(5)*x/2)))/(11*sqrt(5)). - Stefano Spezia, Jun 19 2024
Comments