cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373632 Number of (binary) heaps where n is the sum of their length and the size of the element set [k].

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 8, 17, 41, 103, 282, 792, 2239, 6680, 21143, 70647, 245357, 871255, 3202552, 12334046, 49635128, 205403510, 856780528, 3601169551, 15507530896, 69267381313, 320345619798, 1518428936730, 7345400773513, 36469929240960, 186875135258481
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2024

Keywords

Comments

These heaps may contain repeated elements. Their element sets are gap-free and contain 1 (if nonempty).

Examples

			a(0) = 1: the empty heap.
a(2) = 1: 1.
a(3) = 1: 11.
a(4) = 2: 111, 21.
a(5) = 4: 1111, 211, 212, 221.
a(6) = 8: 11111, 2111, 2121, 2211, 2212, 2221, 312, 321.
a(7) = 17: 111111, 21111, 21211, 22111, 22112, 22121, 22122, 22211, 22212, 22221, 3121, 3211, 3212, 3221, 3231, 3312, 3321.
(The examples use max-heaps.)
		

Crossrefs

Antidiagonal sums of A373451.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
         (g-> (f-> add(b(f, j)*b(n-1-f, j), j=1..k)
                 )(min(g-1, n-g/2)))(2^ilog2(n)))
        end:
    T:= (n, k)-> add(binomial(k, j)*(-1)^j*b(n, k-j), j=0..k):
    a:= n-> add(T(n-j, j), j=0..n/2):
    seq(a(n), n=0..30);

Formula

a(n) = Sum_{j=0..floor(n/2)} A373451(n-j,j).