cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373639 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k,k).

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 9, 16, 27, 43, 71, 119, 196, 322, 533, 882, 1455, 2402, 3970, 6558, 10829, 17887, 29548, 48804, 80608, 133146, 219925, 363254, 599998, 991044, 1636944, 2703794, 4465957, 7376591, 12184181, 20125051, 33241289, 54905857, 90690002, 149795989
Offset: 0

Views

Author

Seiichi Manyama, Jun 12 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,2,0,0,-1},{1, 1, 1, 2, 4, 6},40] (* James C. McMahon, Jun 14 2024 *)
    Table[Sum[Binomial[2n-5k,k],{k,0,Floor[n/3]}],{n,0,40}] (* Harvey P. Dale, Sep 29 2024 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-5*k, k));

Formula

G.f.: 1 / (1 - x^3 - x/(1 - x^3)).
a(n) = a(n-1) + 2*a(n-3) - a(n-6) for n > 5.