A373663 a(n) = (1 + (n+2)^2 + (n-3)*(-1)^n)/2.
6, 8, 13, 19, 24, 34, 39, 53, 58, 76, 81, 103, 108, 134, 139, 169, 174, 208, 213, 251, 256, 298, 303, 349, 354, 404, 409, 463, 468, 526, 531, 593, 598, 664, 669, 739, 744, 818, 823, 901, 906, 988, 993, 1079, 1084, 1174, 1179, 1273, 1278, 1376, 1381, 1483, 1488, 1594
Offset: 1
Examples
[ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12] [ 1] 1 3 4 10 11 21 22 36 37 55 56 78 ... [ 2] 2 5 9 12 20 23 35 38 54 57 77 ... [ 3] 6 8 13 19 24 34 39 53 58 76 ... [ 4] 7 14 18 25 33 40 52 59 75 ... [ 5] 15 17 26 32 41 51 60 74 ... [ 6] 16 27 31 42 50 61 73 ... [ 7] 28 30 43 49 62 72 ... [ 8] 29 44 48 63 71 ... [ 9] 45 47 64 70 ... [10] 46 65 69 ... [11] 66 68 ... [12] 67 ... ...
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
[(1 + (n+2)^2 + (n-3)*(-1)^n)/2: n in [1..80]];
-
Mathematica
k := 3; Table[(1 + (n+k-1)^2 + (n-k) (-1)^(n+k-1))/2, {n, 80}]
-
Python
def A373663(n): return ((n+1)*(n+2)+6 if n&1 else (n+2)*(n+3)-4)>>1 # Chai Wah Wu, Jun 23 2024
Formula
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = A373662(n+1) - (-1)^n.
G.f.: -x*(x^4+2*x^3-7*x^2+2*x+6)/((x+1)^2*(x-1)^3).
Comments