cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A373717 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..floor(k*n/(2*k+1))} binomial(k * (n-2*j),j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 4, 5, 4, 1, 1, 1, 1, 5, 7, 8, 6, 1, 1, 1, 1, 6, 9, 13, 15, 9, 1, 1, 1, 1, 7, 11, 19, 28, 26, 13, 1, 1, 1, 1, 8, 13, 26, 45, 53, 45, 19, 1, 1, 1, 1, 9, 15, 34, 66, 91, 105, 80, 28, 1, 1, 1, 1, 10, 17, 43, 91, 141, 201, 211, 140, 41, 1
Offset: 0

Views

Author

Seiichi Manyama, Jun 15 2024

Keywords

Examples

			Square array begins:
  1, 1,  1,  1,  1,  1,  1, ...
  1, 1,  1,  1,  1,  1,  1, ...
  1, 1,  1,  1,  1,  1,  1, ...
  1, 2,  3,  4,  5,  6,  7, ...
  1, 3,  5,  7,  9, 11, 13, ...
  1, 4,  8, 13, 19, 26, 34, ...
  1, 6, 15, 28, 45, 66, 91, ...
		

Crossrefs

Columns k=0..3 give A000012, A000930, A193147, A373718.
Main diagonal gives A373719.
Cf. A099233.

Programs

  • PARI
    T(n, k) = sum(j=0, k*n\(2*k+1), binomial(k*(n-2*j), j));

Formula

G.f. of column k: 1/(1 - x * (1 + x^2)^k).
T(n,k) = Sum_{j=0..k} binomial(k,j) * T(n-2*j-1,k).

A373720 Expansion of e.g.f. exp(x * (1 + x^2)^3).

Original entry on oeis.org

1, 1, 1, 19, 73, 541, 5761, 35911, 515089, 5399353, 61253281, 991270171, 11862564121, 203249068309, 3295367161633, 52595413358671, 1060046073787681, 18422593177204081, 383150483373313729, 8042585703164409763, 165930214242407069161, 3968988522451484425741
Offset: 0

Views

Author

Seiichi Manyama, Jun 15 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, 3*n\7, binomial(3*n-6*k, k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(3*n/7)} binomial(3*n-6*k,k)/(n-2*k)!.
a(n) == 1 (mod 18).
a(n) = a(n-1) + 9*(n-1)*(n-2)*a(n-3) + 15*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5) + 7*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*a(n-7).
Showing 1-2 of 2 results.