A373796 a(n) = Product_{k=1..n} k^Stirling_2(n,k).
1, 1, 2, 24, 373248, 145563074713240071045120, 4671362199215574200933052290575558394040074468464419088211590760845408889948035734306816000000000000000
Offset: 0
Keywords
Links
- Hugo Pfoertner, Table of n, a(n) for n = 0..7
- Alden F. Pixley, The Ternary Discriminator Function in Universal Algebra, Mathematische Annalen, 191 (1971), 167-180.
Programs
-
Maple
a:= n-> mul(k^Stirling2(n,k), k=1..n): seq(a(n), n=0..6); # Alois P. Heinz, Jan 30 2025
-
Mathematica
A373796[n_] := Product[k^StirlingS2[n, k], {k, n}]; Array[A373796, 8, 0] (* Paolo Xausa, Jul 10 2024 *)
-
PARI
a(n)=prod(k=1,n,k^stirling(n,k,2)) \\ Hugo Pfoertner, Jul 07 2024
Comments