cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A373856 a(n) = Sum_{k=1..n} k! * k^(2*n-1) * |Stirling1(n,k)|.

Original entry on oeis.org

0, 1, 17, 1652, 474770, 301474214, 357901156354, 712632435944568, 2204970751341231816, 10017874331177386762512, 63973486554110386836270096, 554598491512901862814742673168, 6344773703149123365957506715989568, 93563015826037060521986513216617599504
Offset: 0

Views

Author

Seiichi Manyama, Jun 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=13; Range[0,nmax]!CoefficientList[Series[Sum[(-Log[1 - k^2*x])^k / k,{k,nmax}],{x,0,nmax}],x] (* Stefano Spezia, Jun 19 2024 *)
  • PARI
    a(n) = sum(k=1, n, k!*k^(2*n-1)*abs(stirling(n, k, 1)));

Formula

E.g.f.: Sum_{k>=1} (-log(1 - k^2*x))^k / k.
Showing 1-1 of 1 results.