A373869
a(n) = Sum_{k=1..n} k! * k^(n-3) * Stirling1(n,k).
Original entry on oeis.org
0, 1, 0, 2, 26, 674, 28894, 1848216, 165229560, 19698788448, 3022496261616, 580460752264656, 136441193196585408, 38540172064949405616, 12883204327833557091984, 5030833813902039858261504, 2269484487197629285690675584, 1171368942033975021150888242304
Offset: 0
-
a(n) = sum(k=1, n, k!*k^(n-3)*stirling(n, k, 1));
A373871
a(n) = Sum_{k=1..n} k! * k^(n-3) * Stirling2(n,k).
Original entry on oeis.org
0, 1, 2, 13, 233, 8311, 495437, 44495263, 5619239453, 949995402271, 207228784973597, 56681221280785663, 19000392210559326173, 7661410911700580500831, 3658694812581483750630557, 2042247041839449013948374463, 1317554928647608644852032652893
Offset: 0
-
a(n) = sum(k=1, n, k!*k^(n-3)*stirling(n, k, 2));
A373872
a(n) = Sum_{k=1..n} (-1)^(n-k) * k! * k^(n-3) * Stirling2(n,k).
Original entry on oeis.org
0, 1, 0, 1, 15, 391, 16275, 999391, 85314915, 9682617631, 1411532175075, 257220473522431, 57317980108103715, 15338554965273810271, 4855172557420679314275, 1794588990417909081447871, 766066194581899382513514915, 374061220058388896558805473311
Offset: 0
-
a(n) = sum(k=1, n, (-1)^(n-k)*k!*k^(n-3)*stirling(n, k, 2));
A373875
a(n) = Sum_{k=1..n} k! * k^(n-2) * |Stirling1(n,k)|.
Original entry on oeis.org
0, 1, 3, 32, 802, 36854, 2698598, 288450168, 42388536888, 8198703649296, 2019226648157472, 616991110153816848, 229048514514263311008, 101540936651344709359632, 52984383824921037875927760, 32145394332240602286960456192
Offset: 0
-
a(n) = sum(k=1, n, k!*k^(n-2)*abs(stirling(n, k, 1)));
Showing 1-4 of 4 results.