A373870
a(n) = Sum_{k=1..n} k! * k^(n-3) * |Stirling1(n,k)|.
Original entry on oeis.org
0, 1, 2, 14, 254, 9154, 552034, 50183832, 6417140232, 1098719459424, 242758470248976, 67260880064331216, 22840933997866565184, 9330599517868641290160, 4514326567036815466609008, 2553018492454631240215801344, 1668797317379516060093446975104
Offset: 0
-
a(n) = sum(k=1, n, k!*k^(n-3)*abs(stirling(n, k, 1)));
A373873
a(n) = Sum_{k=1..n} k! * k^(n-2) * Stirling2(n,k).
Original entry on oeis.org
0, 1, 3, 31, 765, 34651, 2502213, 263824891, 38248036725, 7298877611371, 1773652375115973, 534749297993098651, 195883403209280580885, 85687658454617655817291, 44120264185381411695106533, 26413555571018242181844978811
Offset: 0
-
Table[Sum[k! k^(n-2) StirlingS2[n,k],{k,n}],{n,0,20}] (* Harvey P. Dale, Jul 13 2025 *)
-
a(n) = sum(k=1, n, k!*k^(n-2)*stirling(n, k, 2));
A373874
a(n) = Sum_{k=1..n} k! * k^(n-2) * Stirling1(n,k).
Original entry on oeis.org
0, 1, 1, 8, 142, 4534, 229658, 16951416, 1718394312, 229119947280, 38881745126112, 8183542269446928, 2092128552508587360, 638590833851037194256, 229398149222697428624688, 95801846241560025353728512, 46025711723325944648182502016
Offset: 0
-
a(n) = sum(k=1, n, k!*k^(n-2)*stirling(n, k, 1));
Showing 1-3 of 3 results.