A373877 Triangle read by rows: T(n, k) is the number of permutations of length n, which contain the maximum number of distinct patterns of length k.
1, 2, 2, 6, 4, 6, 24, 22, 2, 24, 120, 118, 2, 14, 120, 720, 718, 218, 8, 90, 720, 5040, 5038, 3070, 24, 2, 646, 5040, 40320, 40318, 32972, 64, 28, 20, 5242, 40320, 362880, 362878, 336196, 3704, 4, 4, 158, 47622, 362880, 3628800, 3628798, 3533026, 325752, 16, 16, 16, 1960, 479306, 3628800, 39916800, 39916798, 39574122
Offset: 1
Examples
The triangle begins: n| k: 1| 2| 3| 4| 5| 6| 7| 8 ===================================================== [1] 1 [2] 2, 2, [3] 6, 4, 6, [4] 24, 22, 2, 24 [5] 120, 118, 2, 14, 120 [6] 720, 718, 218, 8, 90, 720 [7] 5040, 5038, 3070, 24, 2, 646, 5040 [8] 40320, 40318, 32972, 64, 28, 20, 5242, 40320 ... T(3, 2) = 4 because we have: permutations subsequences patterns number of patterns {1,2,3} : {1,2},{1,3},{2,3} : [1,2],[1,2],[1,2] : 1. {1,3,2} : {1,3},{1,2},{3,2} : [1,2],[1,2],[2,1] : 2 is a winner. {2,1,3} : {2,1},{2,3},{1,3} : [2,1],[1,2],[1,2] : 2 is a winner. {2,3,1} : {2,3},{2,1},{3,1} : [1,2],[2,1],[2,1] : 2 is a winner. {3,1,2} : {3,1},{3,2},{1,2} : [2,1],[2,1],[1,2] : 2 is a winner. {3,2,1} : {3,2},{3,1},{2,1} : [2,1],[2,1],[2,1] : 1. A pattern is a set of indices that may sort a selected subsequence into an increasing sequence.
Programs
-
PARI
row(n) = my(rowp = vector(n!, i, numtoperm(n, i)), v = vector(n), t = vector(n)); for (j=1, n, for (i=1, #rowp, my(r = rowp[i], list = List()); forsubset([n, j], s, my(ss = Vec(s)); vp = vector(j, ik, r[ss[ik]]); vs = Vec(vecsort(vp, , 1)); listput(list, vs); ); if( v[j] < #Set(list), v[j] = #Set(list); t[j] = 1, if(v[j] == #Set(list), t[j] = t[j]+1)); ); ); t;
Comments