A373929 Number of compositions of 7*n-3 into parts 1 and 7.
1, 6, 28, 133, 651, 3206, 15771, 77519, 380989, 1872556, 9203761, 45237262, 222344668, 1092840924, 5371396171, 26400821252, 129762048116, 637790353236, 3134788177277, 15407722718291, 75730131016730, 372219363549007, 1829486529878612, 8992065676243395
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (8,-21,35,-35,21,-7,1).
Programs
-
Mathematica
a[n_]:=n*(1 + n)*(2 + n)*(3 + n)*HypergeometricPFQ[{1-n, (4+n)/6, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6, (9+n)/6}, {5/7, 6/7, 8/7, 9/7, 10/7, 11/7}, -6^6/7^7]/24; Array[a,24] (* Stefano Spezia, Jun 23 2024 *)
-
PARI
a(n) = sum(k=0, n, binomial(n+3+6*k, n-1-k));
Formula
a(n) = A005709(7*n-3).
a(n) = Sum_{k=0..n} binomial(n+3+6*k,n-1-k).
a(n) = 8*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: x*(1-x)^2/((1-x)^7 - x).
a(n) = n*(1 + n)*(2 + n)*(3 + n)*hypergeom([1-n, (4+n)/6, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6, (9+n)/6], [5/7, 6/7, 8/7, 9/7, 10/7, 11/7], -6^6/7^7)/24. - Stefano Spezia, Jun 23 2024