cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373943 a(n) is the cardinality of the set containing all rational numbers of the form 2 <= m/2^(bigomega(m) - 1) <= n.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 6, 7, 7, 7, 10, 11, 13, 13, 13, 15, 18, 19, 21, 22, 22, 22, 24, 25, 27, 29, 30, 31, 34, 35, 36, 37, 38, 38, 40, 41, 43, 45, 47, 48, 49, 50, 54, 57, 57, 58, 61, 62, 63, 63, 63, 65, 66, 67, 67, 70, 71, 74, 75, 77, 79, 82, 82, 84, 86, 89, 91
Offset: 1

Views

Author

Friedjof Tellkamp, Jun 23 2024

Keywords

Examples

			a(10) = 7 = card{2, 3, 9/2, 5, 27/4, 7, 15/2}.
		

Crossrefs

Programs

  • Mathematica
    z = 100;
    k[n_] := Max[1, Floor[Log[3/2, n/2]]];
    m[n_] := n 2^(k[n] - 1);
    PrimePiK = Table[0, Floor[Log[2, m[z]]], m[z]];
    For[i = 2, i <= m[z], i++, PrimePiK[[PrimeOmega[i], i]] = 1]
    PrimePiK = Accumulate /@ PrimePiK;
    a = Table[PrimePiK[[k[n], m[n]]], {n, z}] (*sequence*)
    x = Union@Select[Table[i/2^(PrimeOmega[i] - 1), {i, 1, m[z], 2}], # <= z &] (*set*)
  • PARI
    nap(n, k) = sum(i=1, n, bigomega(i)==k);
    a(n) = my(k=max(1, floor(log(n/2)/(log(3)-log(2))))); nap(n*2^(k-1), k); \\ Michel Marcus, Jun 27 2024
    
  • Python
    from math import isqrt, prod
    from sympy import primepi, primerange, integer_nthroot
    def A373943(n):
        if n<=4: return primepi(n)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        k = 1
        while 3**k<(r:=n<Chai Wah Wu, Dec 03 2024

Formula

a(n) = card{x | x = m/2^(bigomega(m)-1), x<=n}.
a(n) = pi_k(n * 2^(k - 1)), with pi_k(n) as the counting function for k-almost primes and k sufficiently large.
k needs to be at least max(1, floor(log(n/2)/(log(3)-log(2)))) and m = n * 2^(k - 1).
a(n) = A374022(n) + A000720(n).
a(2^n) = A052130(n-1).