A373968 a(n) is the number of divisors of n that are Duffinian numbers (A003624).
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 1, 3, 0, 0, 1, 2, 0, 1, 0, 1, 1, 0, 0, 3, 1, 2, 0, 1, 0, 2, 1, 2, 1, 0, 0, 1, 0, 0, 3, 5, 1, 0, 0, 1, 0, 1, 0, 4, 0, 0, 2, 1, 1, 1, 0, 3, 3, 0, 0, 2, 1, 0, 0, 2
Offset: 1
Keywords
Examples
Since A003624(1) = 4 then a(1) = a(2) = a(3) = 0 and a(4) = 1. a(8) = 2 because 8 has the divisors 4 = A003624(1) and 8 = A003624(2).
Programs
-
Magma
f:=func
; [#[d:d in Divisors(k)|f(d)]:k in [1..100]]; -
Mathematica
a[n_] := DivisorSum[n, 1 &, CompositeQ[#] && CoprimeQ[#, DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, Jul 19 2024 *)
Formula
a(p^k) = k - 1, for p prime and k >= 1.