A374012 Least number of 6th powers needed to represent n.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
Offset: 1
References
- Pillai, S. S. (1940) On Waring’s problem g(6) = 73. Proc. Indian Acad. Sci. 12A: 30-40
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Waring's Problem.
Programs
-
PARI
a_vector(n, k=6) = my(v=vector(n), cnt=0, d=0, p=1, s=sum(j=1, sqrtnint(n, k), x^j^k)+x*O(x^n)); while(cnt
-
Python
from itertools import count from sympy.solvers.diophantine.diophantine import power_representation def A374012(n): if n == 1: return 1 for k in count(1): try: next(power_representation(n,6,k)) except: continue return k # Chai Wah Wu, Jun 25 2024
Formula
a(n) <= 73.
Comments