cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A374074 Odd composite numbers k sorted by k/2^(bigomega(k) - 1).

Original entry on oeis.org

9, 27, 15, 81, 21, 45, 25, 243, 63, 33, 135, 35, 75, 39, 729, 189, 49, 99, 405, 51, 105, 55, 225, 57, 117, 125, 65, 2187, 69, 567, 147, 297, 1215, 153, 77, 315, 165, 675, 85, 171, 87, 175, 351, 91, 93, 375, 95, 195, 6561, 207, 1701, 441, 111, 891, 3645, 459
Offset: 1

Views

Author

Friedjof Tellkamp, Jun 27 2024

Keywords

Comments

Sorting by k/2^bigomega(k) would give the same sequence.
It appears that this sequence can be used to approximate the imaginary parts of the nontrivial zeta zeros, that is, A002410(n) is roughly equal to 2*Pi*a(n)/2^bigomega(a(n)) - n/2 + sqrt(n)/2.
Calculations show that the relative error approaches 1.0+-0.005 for the first 3800 zeros (z=2000 in Mathematica code). For further zeros, a better approximation may be useful, e.g. 2*Pi*a(n)/2^bigomega(a(n)) - n/2 + (1/Pi) * n/log(n+1) +- (...).

Examples

			The odd composite numbers (A071904) are: 9, 15, 21, 25, 27, ... .
Divide by 2^(bigomega()-1): 9/2, 15/2, 21/2, 25/2, 27/4, ... .
Sort: 9/2, 27/4, 15/2, 81/8, ... .
Take numerator: this sequence = 9, 27, 15, 81, ... .
		

Crossrefs

Programs

  • Mathematica
    (*This algorithm calculates and sorts all noninteger rationals of the form x = k/2^(bigomega(k)-1) up to z, where the numerators of x are returned as the sequence*)
    z = 100; op = Prime[Range[2, PrimePi[z]]]; (*A065091, odd primes*)
    x = Select[Union[Flatten[Outer[Times, op, op/2]]], # <= z &];
    For[i = 1, i < Max[1, Floor[Log[3/2, z/2]]] - 1, i++, x = Select[Union[x, Flatten[Outer[Times, x, op/2]]], # <= z &]]
    a = Numerator[x] (*sequence*)
    zzaprx = N@Table[2 Pi a[[i]]/2^PrimeOmega[a[[i]]] - i/2 + Sqrt[i]/2, {i, 1, Length[a]}] (*approximation for zeta zeros*)

Formula

A374022(a(n)/2^(bigomega(a(n))-1)) ~ n.

A373943 a(n) is the cardinality of the set containing all rational numbers of the form 2 <= m/2^(bigomega(m) - 1) <= n.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 6, 7, 7, 7, 10, 11, 13, 13, 13, 15, 18, 19, 21, 22, 22, 22, 24, 25, 27, 29, 30, 31, 34, 35, 36, 37, 38, 38, 40, 41, 43, 45, 47, 48, 49, 50, 54, 57, 57, 58, 61, 62, 63, 63, 63, 65, 66, 67, 67, 70, 71, 74, 75, 77, 79, 82, 82, 84, 86, 89, 91
Offset: 1

Views

Author

Friedjof Tellkamp, Jun 23 2024

Keywords

Examples

			a(10) = 7 = card{2, 3, 9/2, 5, 27/4, 7, 15/2}.
		

Crossrefs

Programs

  • Mathematica
    z = 100;
    k[n_] := Max[1, Floor[Log[3/2, n/2]]];
    m[n_] := n 2^(k[n] - 1);
    PrimePiK = Table[0, Floor[Log[2, m[z]]], m[z]];
    For[i = 2, i <= m[z], i++, PrimePiK[[PrimeOmega[i], i]] = 1]
    PrimePiK = Accumulate /@ PrimePiK;
    a = Table[PrimePiK[[k[n], m[n]]], {n, z}] (*sequence*)
    x = Union@Select[Table[i/2^(PrimeOmega[i] - 1), {i, 1, m[z], 2}], # <= z &] (*set*)
  • PARI
    nap(n, k) = sum(i=1, n, bigomega(i)==k);
    a(n) = my(k=max(1, floor(log(n/2)/(log(3)-log(2))))); nap(n*2^(k-1), k); \\ Michel Marcus, Jun 27 2024
    
  • Python
    from math import isqrt, prod
    from sympy import primepi, primerange, integer_nthroot
    def A373943(n):
        if n<=4: return primepi(n)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        k = 1
        while 3**k<(r:=n<Chai Wah Wu, Dec 03 2024

Formula

a(n) = card{x | x = m/2^(bigomega(m)-1), x<=n}.
a(n) = pi_k(n * 2^(k - 1)), with pi_k(n) as the counting function for k-almost primes and k sufficiently large.
k needs to be at least max(1, floor(log(n/2)/(log(3)-log(2)))) and m = n * 2^(k - 1).
a(n) = A374022(n) + A000720(n).
a(2^n) = A052130(n-1).
Showing 1-2 of 2 results.