A374023 Numbers m such that m .. m+11 all have the same number of prime factors, counted with multiplicity.
3195380868, 5208143601, 5208143602, 5327400945, 5604994082, 5604994083, 6940533603, 6940533604, 7109053186, 7112231268, 19355940562, 22180594465, 24073076004, 24155988484, 29495293764, 30997967601, 41999754228, 42322452483, 42322452484, 45479198003, 46553917683
Offset: 1
Keywords
Examples
5208143601 is a term because 5208143601 = 3 * 139 * 2153 * 5801 5208143602 = 2 * 47 * 4261 * 13003 5208143603 = 13 * 103 * 419 * 9283 5208143604 = 2^2 * 3 * 434011967 5208143605 = 5 * 7^2 * 21257729 5208143606 = 2 * 37 * 109 * 645691 5208143607 = 3^2 * 647 * 894409 5208143608 = 2^3 * 651017951 5208143609 = 73^2 * 367 * 2663 5208143610 = 2 * 3 * 5 * 173604787 5208143611 = 11 * 29 * 1129 * 14461 5208143612 = 2^2 * 7 * 186005129 all have 4 prime factors, counted with multiplicity.
Links
- Martin Ehrenstein, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
isok(m) = #Set(apply(bigomega, vector(11, i, m+i-1))) == 1; \\ Michel Marcus, Jul 11 2024
Extensions
Missing term inserted by, and more terms from Martin Ehrenstein, Jul 11 2024
Comments