A374024 Integers k such that digsum(k) = digsum(k^2) = p, where p is prime and digsum(i) = A007953(i).
199, 289, 379, 388, 496, 559, 568, 595, 739, 775, 838, 955, 1099, 1189, 1198, 1468, 1495, 1585, 1738, 1747, 1765, 1792, 1855, 1990, 2098, 2494, 2665, 2881, 2890, 3169, 3196, 3259, 3349, 3466, 3493, 3745, 3790, 3880, 4249, 4519, 4735, 4951, 4960, 5149, 5482
Offset: 1
Examples
199 is a term, because its digital sum is 1 + 9 + 9 = 19 and 199^2 = 39601, whose digital sum is 3 + 9 + 6 + 0 + 1 = 19, which is prime.
Programs
-
Maple
ds:= n -> convert(convert(n,base,10),`+`): filter:= proc(n) local p; p:= ds(n); isprime(p) and ds(n^2) = p end proc: select(filter, [seq(i,i=1..1000, 9)]); # Robert Israel, Jul 05 2024
-
Mathematica
Select[Range[5490],PrimeQ[dg=DigitSum[#]]&&(dg==DigitSum[#^2])&] (* Stefano Spezia, Jul 05 2024 *)
-
PARI
isok(k) = my(s=sumdigits(k)); isprime(s) && (s==sumdigits(k^2)); \\ Michel Marcus, Jul 06 2024
Comments