cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374027 Lexicographically earliest sequence of numbers whose partial products are all Fermat pseudoprimes to base 2 (A001567).

Original entry on oeis.org

341, 41, 61, 181, 721, 3061, 6121, 9181, 27541, 36721, 91801, 100981, 238681, 21242521, 67665781, 477361, 48690721, 7160401, 76377601, 35802001, 83394792001, 7500519001, 60004152001, 3420236664001, 1380095496001, 13110907212001, 56583915336001, 128003857254001
Offset: 1

Views

Author

Amiram Eldar, Jun 26 2024

Keywords

Examples

			The partial products begin with 341 = A001567(1), 341 * 41 = 13981 = A001567(29), 341 * 41 * 61 = 852841 = A001567(234), 341 * 41 * 61 * 181 = 154364221 = A001567(2509), ... .
		

Crossrefs

Programs

  • Mathematica
    pspQ[n_] := PowerMod[2, n - 1, n] == 1; a[1] = 341; a[n_] := a[n] = Module[{k = 3, r = Product[a[i], {i, 1, n - 1}]}, While[!pspQ[k*r], k+=2]; k]; Array[a, 8]
  • PARI
    ispsp(n) = Mod(2, n)^(n-1) == 1;
    lista(len) = {my(prd = 1, c = 0, k = 341); while(c < len, while(!ispsp(prd * k), k += 2); prd *= k; print1(k,", "); c++; k = 3);}
    
  • PARI
    my(S=List(341),base=2); my(m = vecprod(Vec(S))); my(L = znorder(Mod(base, m))); print1(S[1], ", "); while(1, forstep(k=lift(1/Mod(m, L)), oo, L, if(gcd(m,k) == 1 && k > 1 && base % k != 0, if((m*k-1) % znorder(Mod(base, k)) == 0, print1(k, ", "); listput(S, k); L = lcm(L, znorder(Mod(base, k))); m *= k; break)))); \\ Daniel Suteu, Jun 30 2024

Extensions

a(21)-a(28) from Daniel Suteu, Jun 30 2024