A374034 a(n) = A276150(gcd(A276085(n), A328768(n))), where A276150 is the digit sum in primorial base, A276085 is the primorial base log-function, and A328768 is the first primorial based variant of arithmetic derivative.
0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 2, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 6, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3
Offset: 1
Keywords
Links
Programs
-
PARI
A002110(n) = prod(i=1,n,prime(i)); A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); }; A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); }; A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i,1])-1)/f[i, 1])); A374034(n) = A276150(gcd(A276085(n), A328768(n)));