A374157 a(n) = (-1)^floor(n/2)*n.
0, 1, -2, -3, 4, 5, -6, -7, 8, 9, -10, -11, 12, 13, -14, -15, 16, 17, -18, -19, 20, 21, -22, -23, 24, 25, -26, -27, 28, 29, -30, -31, 32, 33, -34, -35, 36, 37, -38, -39, 40, 41, -42, -43, 44, 45, -46, -47, 48, 49, -50, -51, 52, 53, -54, -55, 56, 57, -58, -59
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,-2,0,-1).
Programs
-
Maple
a := n -> (-1)^iquo(n, 2)*n: seq(a(n), n = 0..59);
-
Mathematica
Array[(-1)^Floor[#/2]*# &, 60, 0] (* Michael De Vlieger, Jun 30 2024 *)
-
PARI
a(n) = (-1)^(n\2) * n; \\ Amiram Eldar, Jun 30 2024
-
Python
def A374157(n): return (-1)**(n // 2)*n
-
Python
def A374157(n): return -n if n&2 else n # Chai Wah Wu, Jun 30 2024
Formula
Sum_{n>=1} 1/a(n) = Pi/4 - log(2)/2 = A196521.
a(n) = [x^n] -x*(x^2 + 2*x - 1)/(x^2 + 1)^2.
a(n) = n! * [x^n] x*(cos(x) - sin(x)). - Stefano Spezia, Jun 30 2024
a(n) = n*A057077(n). - Michel Marcus, Jul 01 2024
Comments