cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374209 Number of terms in Zeckendorf representation needed to write A113177(n), where A113177 is fully additive with a(p) = Fibonacci(p).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 3, 2, 2, 2, 1, 2, 2, 3, 1, 2, 1, 2, 3, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 3, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 02 2024

Keywords

Comments

Indices for the first occurrences of k=0..6 are: 1, 2, 9, 63, 693, 7623, 105105.
The claim a(n) <= bigomega(n) is true because A007895(n) is the minimum number of Fibonacci numbers which sum to n, regardless of adjacency or duplication. See Apr 17 2015 comments there.

Crossrefs

Programs

  • PARI
    A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A113177(n) = if(n<=1, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2]*fibonacci(f[i,1])));
    A374209(n) = if(isprime(n), 1, A007895(A113177(n)));

Formula

a(n) = A007895(A113177(n)).
a(p) = 1 for all primes p.
a(n) <= A001222(n), see comments.