A374209 Number of terms in Zeckendorf representation needed to write A113177(n), where A113177 is fully additive with a(p) = Fibonacci(p).
0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 3, 2, 2, 2, 1, 2, 2, 3, 1, 2, 1, 2, 3, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 3, 1, 2, 1, 2, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..129591
- Eric Weisstein's World of Mathematics, Fibonacci Number.
- Wikipedia, Zeckendorf's theorem.
Programs
-
PARI
A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); } A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649 A113177(n) = if(n<=1, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2]*fibonacci(f[i,1]))); A374209(n) = if(isprime(n), 1, A007895(A113177(n)));
Comments