A374224 Integer part of the total Euclidean length of the shortest minimum-link polygonal chains joining all the nodes of the grid {0,1,...,n-1} X {0,1,...,n-1}.
0, 3, 12, 20, 28, 40, 53, 68, 85, 104, 125, 148, 173, 200, 229, 260, 293, 328, 365, 404, 445, 488, 533, 580, 629, 680, 733, 788, 845, 904, 965, 1028, 1093, 1160, 1229, 1300, 1373, 1448, 1525, 1604, 1685, 1768, 1853, 1940, 2029, 2120, 2213, 2308, 2405, 2504
Offset: 1
Examples
a(2) = 3 since we can join the points {0,1}^2 with a spanning path consisting of 3 line segments having a total Euclidean length of 2^2 - 1.
Links
- Marco Ripà, Shortest polygonal chains covering each planar square grid, arXiv:2207.08708 [math.CO], 2022. See pp. 11-13.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Join[{0, 3, 12, 20, 28} Table[Floor[n^2 + 5*Sqrt[2]] - 3 , {n, 6, 50}]] LinearRecurrence[{3,-3,1},{0,3,12,20,28,40,53,68},50] (* Harvey P. Dale, Jul 19 2025 *)
Formula
a(1) = 1, a(2) = 3, a(3) = floor(5*(1+sqrt(2))) = 12, a(5) = floor(20 + 6*sqrt(2)) = 28, and a(n) = floor(n^2 + 5*sqrt(2)) - 3 iff n = 4 or n >= 6.
For n > 5, a(n) = n^2 + 4.
G.f.: x^2*(3 + 3*x - 7*x^2 + x^3 + 4*x^4 - 3*x^5 + x^6)/(1 - x)^3. - Stefano Spezia, Jul 02 2024
Comments