cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374224 Integer part of the total Euclidean length of the shortest minimum-link polygonal chains joining all the nodes of the grid {0,1,...,n-1} X {0,1,...,n-1}.

Original entry on oeis.org

0, 3, 12, 20, 28, 40, 53, 68, 85, 104, 125, 148, 173, 200, 229, 260, 293, 328, 365, 404, 445, 488, 533, 580, 629, 680, 733, 788, 845, 904, 965, 1028, 1093, 1160, 1229, 1300, 1373, 1448, 1525, 1604, 1685, 1768, 1853, 1940, 2029, 2120, 2213, 2308, 2405, 2504
Offset: 1

Views

Author

Marco Ripà, Jun 30 2024

Keywords

Comments

This sequence describes the optimal solution of the 2D generalization of the well-known nine dots problem, published in Loyd’s Cyclopedia of Puzzles (1914), p. 301.
Since Solomon Golomb constructively proved that, for any n >= 3, the minimum-link polygonal chain covering a given {0,1,...,n-1} X {0,1,...,n-1} grid consists of (exactly) 2*(n - 1) line segments, we only need to find the shortest trail satisfying the constraint above.
In detail, if n = 2, the trivial spanning path (0,1)-(0,0)-(1,0)-(1,1) is optimal. If n = 3, we have the classic solution of the nine dots problem (0,1)-(0,3)-(3,0)-(0,0)-(2,2). Now, if n > 3, a valid upper bound is given by n^2 + 5*sqrt(2) - 3, but it is possible to improve this solution for the n = 5 case by providing the trail.
(2,3)-(4,3)-(1,0)-(1,3)-(4,0)-(0,0)-(0,4)-(4,4)-(4,1), whose total Euclidean length is 20 + 6*sqrt(2). In the end, assuming n > 5, we can recycle the mentioned solution, then extend the last line segment to reach (4,-1), and finally apply the square spiral pattern to the (extended) ending segment of the {0,1,...,n-1} X {0,1,...,n-1} grid solution in order to get the solution for the {0,1,...,n} X {0,1,...,n} case, joining 2*n + 1 more points by spending two additional line segments having a combined length of 2*n (and this is an iterative strategy which is optimal for any n > 5).

Examples

			a(2) = 3 since we can join the points {0,1}^2 with a spanning path consisting of 3 line segments having a total Euclidean length of 2^2 - 1.
		

Crossrefs

Programs

  • Mathematica
    Join[{0, 3, 12, 20, 28} Table[Floor[n^2 + 5*Sqrt[2]] - 3 , {n, 6, 50}]]
    LinearRecurrence[{3,-3,1},{0,3,12,20,28,40,53,68},50] (* Harvey P. Dale, Jul 19 2025 *)

Formula

a(1) = 1, a(2) = 3, a(3) = floor(5*(1+sqrt(2))) = 12, a(5) = floor(20 + 6*sqrt(2)) = 28, and a(n) = floor(n^2 + 5*sqrt(2)) - 3 iff n = 4 or n >= 6.
For n > 5, a(n) = n^2 + 4.
G.f.: x^2*(3 + 3*x - 7*x^2 + x^3 + 4*x^4 - 3*x^5 + x^6)/(1 - x)^3. - Stefano Spezia, Jul 02 2024