A374242 a(n) is the minimal absolute value of the determinant of a nonsingular n X n symmetric Toeplitz matrix having 1 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
1, 1, 3, 9, 3, 1, 5, 9, 1, 1, 1, 1
Offset: 3
Examples
a(5) = 3: [1, 1, 2, 3, 4] [1, 1, 1, 2, 3] [2, 1, 1, 1, 2] [3, 2, 1, 1, 1] [4, 3, 2, 1, 1]
Links
- Lucas A. Brown, Python program.
- Wikipedia, Toeplitz Matrix.
Crossrefs
Programs
-
Mathematica
a[n_]:=Min[Select[Table[Abs[Det[ToeplitzMatrix[Join[{1}, Part[Permutations[Range[n - 1]], i]]]]], {i, (n-1)!}],Positive]]; Array[a, 8, 3]
Extensions
a(11)-a(14) from Lucas A. Brown, Oct 10 2024
Comments