A374258 Square array: T(n,k) = ((3^(n+1) + 1)^(k-1) + 2)/3, read by descending antidiagonals.
1, 4, 1, 34, 10, 1, 334, 262, 28, 1, 3334, 7318, 2242, 82, 1, 33334, 204886, 183790, 19846, 244, 1, 333334, 5736790, 15070726, 4842262, 177634, 730, 1, 3333334, 160630102, 1235799478, 1181511766, 129672334, 1595782, 2188, 1, 33333334, 4497642838, 101335557142, 288288870742, 94660803334, 3491569558, 14353282, 6562, 1
Offset: 1
Examples
The array begins: 1 4 34 334 3334 1 10 262 7318 1 28 2242 1 82 1 Example of the conjecture: Take 5 terms from the 4th row and find their product in base 244 numeral system (since 3^(4+1)+1=244) as follows: 82,19846 twice and 4842262 twice, the product is equal to 82*19846*19846*4842262*4842262 = 757279838666167487626528 = (1, 3, 7, 19, 31, 55, 91, 115, 163, 195, 212)_244 which is in agreement with the conjecture since the digits in 244 base numeral system are in nondecreasing order. Example of the general property: Take r=3 and n=4, then b=4^5+1=1025. The sequence S is the sequence of the numbers of the form (1025^b(1)+1025^b(2)+1025^b(3)+1)/4. Let's multiply 5 terms of the sequence S, say ((1025^0+1025^0+1025^1+1)/4)*(((1025^0+1025^1+1025^1+1)/4)^2)*(((1025^3+1025^4+1025^4+1)/4)^2) = 257*513^2*552175667969^2 = 20621601208620337073958261562113 = (16,112,308,488,580,680,832,936,964,984,1013)_1025. The digits of the product in base 1025 are in nondecreasing order.
Links
- Michel Marcus, Table of n, a(n) for n = 1..820
Programs
-
Mathematica
T[n_, k_] := ((3^(n+1) + 1)^(k-1) + 2)/3; Table[T[k, n-k+1], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, Jul 02 2024 *)
-
PARI
T(n,k) = ((3^(n+1) + 1)^(k-1) + 2)/3 \\ Andrew Howroyd, Jul 01 2024
Comments