cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374276 Number of representations of n by the quadratic form x^2 + 3*x*y + y^2 with 0 <= x <= y.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2024

Keywords

Examples

			121 = 0^2 + 3*0*11 + 11^2 = 3^2 + 3*3*7 + 7^2. So a(121) = 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{m=Floor[Sqrt[n]]},Sum[Sum[Boole[i^2+3i*j+j^2==n],{j,i,m}],{i,0,m}]]; Array[a,122,0] (* Stefano Spezia, Jul 02 2024 *)
  • PARI
    a(n) = my(m=sqrtint(n)); sum(i=0, m, sum(j=i, m, i^2+3*i*j+j^2==n));

Formula

a(A031363(n)) > 0.