A374320 Number of partitions of [n] such that the number of blocks of size k is a multiple of k for every k.
1, 1, 1, 1, 4, 16, 46, 106, 316, 1604, 8156, 33716, 125456, 1073216, 10233224, 69873896, 364469561, 2296961801, 19124734801, 147200743489, 960313414036, 6422446261456, 52845891370966, 461844834503746, 3779922654292324, 31131912140021452, 296987899271509252
Offset: 0
Keywords
Examples
a(0) = 1: the empty partition. a(1) = 1: 1. a(2) = 1: 1|2. a(3) = 1: 1|2|3. a(4) = 4: 12|34, 13|24, 14|23, 1|2|3|4. a(5) = 16: 12|34|5, 12|35|4, 12|3|45, 13|24|5, 13|25|4, 13|2|45, 14|23|5, 15|23|4, 1|23|45, 14|25|3, 14|2|35, 15|24|3, 1|24|35, 15|2|34, 1|25|34, 1|2|3|4|5. a(9) = 1604: 123|456|789, 123|457|689, 123|458|679, 123|459|678, ..., 1|2|3|49|5|6|78, 1|2|3|4|59|6|78, 1|2|3|4|5|69|78, 1|2|3|4|5|6|7|8|9.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..579
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, add(combinat[multinomial](n, i$i*j, n-i^2*j)* b(n-i^2*j, i-1)/(i*j)!, j=0..n/i^2)) end: a:= n-> b(n$2): seq(a(n), n=0..28);