cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A374359 a(1) = 2, a(n) = 5 for n > 1.

Original entry on oeis.org

2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Stefano Spezia, Jul 06 2024

Keywords

Comments

Decimal expansion of 23/9, which is an approximation of the 5th root of 109 (A374357).
Simple continued fraction expansion of (1 + sqrt(29))/14 = (1 + A010484)/14.

Examples

			2.555555555555555555555555555555555555555...
		

Crossrefs

Cf. A374357 (decimal expansion of the 5th root of 109), A374358 (continued fraction of the 5th root of 109).
Cf. A010484.
Essentially the same as A021022 and A010716.

Programs

  • Mathematica
    LinearRecurrence[{1},{2,5},100]

Formula

G.f.: x*(2 + 3*x)/(1 - x).
a(n) = a(n-1) for n > 2.
E.g.f.: 5*exp(x) - 3*x - 5.

A374357 Decimal expansion of the 5th root of 109.

Original entry on oeis.org

2, 5, 5, 5, 5, 5, 5, 3, 9, 6, 7, 3, 5, 1, 8, 9, 8, 1, 7, 0, 4, 1, 8, 2, 0, 4, 7, 1, 2, 8, 0, 0, 9, 4, 0, 4, 5, 2, 1, 2, 8, 1, 4, 3, 0, 5, 1, 3, 3, 2, 5, 5, 8, 1, 5, 9, 6, 8, 3, 6, 2, 4, 9, 0, 2, 4, 5, 5, 0, 2, 8, 7, 5, 6, 5, 3, 8, 3, 2, 1, 8, 1, 1, 1, 6, 3, 5, 2, 1, 6, 5, 0, 1, 7, 6, 3, 8, 1, 0, 0
Offset: 1

Views

Author

Stefano Spezia, Jul 06 2024

Keywords

Examples

			2.555555396735189817041820471280094045212814305...
		

Crossrefs

Cf. A374358 (continued fraction), A374359 (decimal expansion of the third convergent).

Programs

  • Mathematica
    RealDigits[109^(1/5),10,100][[1]]
  • Python
    from sympy import integer_nthroot
    def A374357(n): return integer_nthroot(109*10**(5*(n-1)),5)[0]%10 # Chai Wah Wu, Jul 07 2024
Showing 1-2 of 2 results.