A374376 Array read by downward antidiagonals: T(k,n) is the least number that has k prime factors (counted with multiplicity) and is the concatenation of n primes, or -1 if there is no such number.
2, 23, -1, 223, 22, -1, 2237, 235, 27, -1, 22273, 2227, 222, 132, -1, 222323, 22223, 2222, 225, 32, -1, 2222273, 222223, 22222, 2223, 252, 729, -1, 22222223, 2222557, 222227, 22225, 2322, 352, 192, -1, 222222227, 22222237, 2222222, 222225, 22232, 2232, 2352, 2112, -1, 2222222377, 222222223
Offset: 1
Examples
Array starts 2 23 223 2237 22273 ... -1 22 235 2227 22223 ... -1 27 222 2222 22222 ... -1 132 225 2223 22225 ... -1 32 252 2322 22232 ... A(4,3) = 225 because 225 = 3^2 * 5^2 is the product of 4 primes (with multiplicity) and is the concatenation of the 3 primes 2, 2 and 5, and is the least number that works.
References
- T(k,1) = -1 for k > 1.
Programs
-
Maple
PD[1]:= [2,3,5,7]: for i from 2 to 7 do PD[i]:= select(isprime,[seq(i,i=10^(i-1)+1..10^i-1,2)]) od: dcat:= proc(a,b) 10^(ilog10(b)+1)*a+b end proc: cp:= proc(m,n) option remember; local d,p,x,R; if n = 1 then return PD[m] fi; R:= {}; for d from 1 to m-n+1 do R:= R union {seq(seq(dcat(p,x),p=PD[d]),x=procname(m-d,n-1))} od; R end proc: F:= proc(n,N) local V,count,d,x,v; if n = 1 then return <2,(-1)$(N-1)> fi; V:= Vector(N); count:= 0; for d from n while count < N do for x in sort(convert(cp(d,n),list)) while count < N do v:= numtheory:-bigomega(x); if v <= N and V[v] = 0 then V[v]:= x; count:= count+1; fi od od: V; end proc: N:= 10: M:= Matrix(N,N): for i from 1 to N do V:= F(i,N+1-i); M[i,1..N+1-i]:= V; od: [seq(seq(M[t-i,i],i=1..t-1),t=2..N+1)];