cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A374665 a(n) is the first number that is the concatenation of n primes and also the product of n primes (counted with multiplicity).

Original entry on oeis.org

2, 22, 222, 2223, 22232, 222222, 2222325, 22222272, 222225552, 2222223255, 22222335232, 222222327525, 2222222372352, 22222222575552, 222222223327232, 2222222225252352, 22222222223327232, 222222222272535552, 2222222222225252352, 22222222222327775232, 222222222222737375232
Offset: 1

Views

Author

Robert Israel, Jul 15 2024

Keywords

Comments

Is this a subsequence of A046034?

Examples

			a(5) = 22232 because 22232 is the concatenation of the 5 primes 2, 2, 2, 3, 2 and 22232 = 2^3 * 7 * 397 is the product of 5 primes (counted with multiplicity).
		

Crossrefs

Cf. A001222, A046034. Main diagonal of A374376.

Programs

  • Maple
    f:= proc(n) local k, x, W, L, i;
      W:= [2,3,5,7];
      for k from 0 to 4^n-1 do
        L:= convert(4^n+k,base,4);
        x:= add(W[L[i]+1]*10^(i-1),i=1..n);
        if numtheory:-bigomega(x) = n then return x fi;
      od;
    end proc:
    map(f, [$1..20]);

Formula

A001222(a(n)) = n.

A374669 a(n) is the least number with n prime factors (counted with multiplicity) that is the concatenation of two primes.

Original entry on oeis.org

23, 22, 27, 132, 32, 729, 192, 2112, 1792, 5632, 3072, 59392, 64512, 90112, 110592, 950272, 2260992, 3244032, 786432, 30277632, 7340032, 23068672, 12582912, 494927872, 1333788672, 1375731712, 704643072, 3892314112, 1879048192, 37446746112, 27380416512, 196494753792, 30064771072, 94489280512
Offset: 1

Views

Author

Robert Israel, Jul 15 2024

Keywords

Examples

			a(4) = 132 because 132 = 2^2 * 3 * 11 is the product of 4 primes (counted with multiplicity) and is the concatenation of the two primes 13 and 2.
		

Crossrefs

Cf. A001222. Second column of A374376.

Programs

  • Maple
    cp:= proc(n) local k;
      if n::even then n mod 10 = 2 and isprime((n-2)/10)
      elif n mod 5 = 0 then isprime((n-5)/10)
      else for k from 1 to ilog10(n) do
        if isprime(n mod 10^k) and isprime(floor(n/10^k)) then return true fi
        od;
        false
      fi
    end proc:
    f:= proc(n) uses priqueue; local pq, p, q, T, TP, j, v;
      initialize(pq);
      insert([-2^n,2$n],pq);
      do
        T:= extract(pq);
        v:= -T[1];
        if cp(v) then return(v) fi;
        q:= T[-1];
        p:= nextprime(q);
        for j from n+1 to 2 by -1 do
          if T[j] <> q then break fi;
          TP:= [T[1]*(p/q)^(n+2-j), op(T[2..j-1]), p$(n+2-j)];
          insert(TP, pq)
      od od;
    end proc:
    map(f, [$1..30]);
Showing 1-2 of 2 results.