cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A374376 Array read by downward antidiagonals: T(k,n) is the least number that has k prime factors (counted with multiplicity) and is the concatenation of n primes, or -1 if there is no such number.

Original entry on oeis.org

2, 23, -1, 223, 22, -1, 2237, 235, 27, -1, 22273, 2227, 222, 132, -1, 222323, 22223, 2222, 225, 32, -1, 2222273, 222223, 22222, 2223, 252, 729, -1, 22222223, 2222557, 222227, 22225, 2322, 352, 192, -1, 222222227, 22222237, 2222222, 222225, 22232, 2232, 2352, 2112, -1, 2222222377, 222222223
Offset: 1

Views

Author

Robert Israel, Jul 14 2024

Keywords

Examples

			Array starts
  2  23   223   2237   22273  ...
 -1  22   235   2227   22223  ...
 -1  27   222   2222   22222  ...
 -1 132   225   2223   22225  ...
 -1  32   252   2322   22232  ...
A(4,3) = 225 because 225 = 3^2 * 5^2 is the product of 4 primes (with multiplicity) and is the concatenation of the 3 primes 2, 2 and 5, and is the least number that works.
		

References

  • T(k,1) = -1 for k > 1.

Crossrefs

Cf. A001222, A069837 (first row), A374665 (main diagonal), A374669 (second column).

Programs

  • Maple
    PD[1]:= [2,3,5,7]:
    for i from 2 to 7 do PD[i]:= select(isprime,[seq(i,i=10^(i-1)+1..10^i-1,2)]) od:
    dcat:= proc(a,b) 10^(ilog10(b)+1)*a+b end proc:
    cp:= proc(m,n) option remember; local d,p,x,R;
      if n = 1 then return PD[m] fi;
      R:= {};
      for d from 1 to m-n+1 do
        R:= R union {seq(seq(dcat(p,x),p=PD[d]),x=procname(m-d,n-1))}
      od;
      R
    end proc:
    F:= proc(n,N)
    local V,count,d,x,v;
    if n = 1 then return <2,(-1)$(N-1)> fi;
    V:= Vector(N); count:= 0;
    for d from n while count < N do
      for x in sort(convert(cp(d,n),list)) while count < N do
        v:= numtheory:-bigomega(x);
        if v <= N and V[v] = 0 then
          V[v]:= x; count:= count+1;
        fi
    od od:
    V;
    end proc:
    N:= 10: M:= Matrix(N,N):
    for i from 1 to N do
      V:= F(i,N+1-i);
      M[i,1..N+1-i]:= V;
    od:
    [seq(seq(M[t-i,i],i=1..t-1),t=2..N+1)];

A384403 a(n) is the smallest number with n digits, all of which are prime, and n prime factors, counted with multiplicity, or -1 if there is no such number.

Original entry on oeis.org

2, 22, 222, 2223, 22232, 222222, 2222325, 22222272, 222225552, 2222223255, 22222335232, 222222327525, 2222222372352, 22222222575552, 222222223327232, 2222222225252352, 22222222223327232, 222222222272535552, 2222222222225252352, 22222222222327775232, 222222222222737375232, 2222222222227572375552
Offset: 1

Views

Author

Robert Israel, May 27 2025

Keywords

Comments

How is this related to A374665? - R. J. Mathar, May 30 2025

Examples

			a(4) = 2223 because the four digits 2,2,2,3 are prime and 2223 = 3^2 * 13 * 19 has 4 prime factors, counted with multiplicity.
		

Programs

  • Maple
    PD:= [2,3,5,7]:
    f:= proc(n) local x,L,t,i;
        for x from 4^n to 2*4^n-1 do
          L:= convert(x,base,4);
          t:= add(PD[L[i]+1]*10^(i-1),i=1..n);
          if numtheory:-bigomega(t) = n then return t fi
        od;
        -1
    end proc;
    map(f, [$1..25]);

A384726 a(n) is the least number that is both the product of n distinct primes and the concatenation of n distinct primes.

Original entry on oeis.org

2, 35, 273, 11235, 237615, 11237835, 1123317195, 111371237835, 11132343837615, 1113172923477615, 111317233377372295, 11131723677292413195, 1113172377671953734135, 111317192375336174123715
Offset: 1

Views

Author

Robert Israel, Jun 08 2025

Keywords

Comments

a(n) is odd for n >= 2, because a number whose last digit is 2 and second-last is odd is divisible by 4.

Examples

			a(4) = 11235 is a term because 11235 is the product of four distinct primes 3, 5, 7, 107 and the concatenation of four distinct primes 11, 2, 3, 5, and no smaller number works.
		

Crossrefs

Programs

  • Maple
    cdp:= proc(x, n, S)
      local i,y;
      if n = 1 then return (not(member(x,S)) and isprime(x)) fi;
      for i from 1 to ilog10(x)+2-n do
        y:= x mod 10^i;
        if member(y,S) or not isprime(y) then next fi;
        if procname((x-y)/10^i, n-1, S union {y}) then return true fi;
      od;
      false
    end proc:
    f:= proc(n) uses priqueue; local pq, t, p, x, i, L, v, Lp;
      initialize(pq);
      L:= [seq(ithprime(i), i=2..n+1)];
      v:= convert(L, `*`);
      insert([-v, L], pq);
      do
        t:= extract(pq);
        x:= -t[1];
        if cdp(x,n,{}) then return x fi;
        L:= t[2];
        p:= nextprime(L[-1]);
        for i from n to 1 by -1 do
          if i < n and L[i] <> prevprime(L[i+1]) then break fi;
          Lp:= [op(L[1..i-1]), op(L[i+1..n]), p];
          insert([-convert(Lp, `*`), Lp], pq)
      od od;
    end proc:
    f(1):= 2:
    map(f, [$1..9]);

Extensions

a(11)-a(14) from Jinyuan Wang, Jun 12 2025
Showing 1-3 of 3 results.