A374417 a(n) is the smallest number which can be represented as the sum of n distinct positive cubes in exactly 2 ways, or -1 if no such number exists.
-1, 1729, 1009, 1036, 1161, 1504, 1899, 2512, 3024, 4355, 6552, 9296, 11648, 14392, 19305, 25137, 30997, 35757, 44092, 53353, 64001, 76168, 88669, 104625, 122201, 144153, 167401, 191772, 216161, 245952, 278757, 312993, 352297, 393822, 434295, 489167, 541081, 605656, 671446
Offset: 1
Keywords
Examples
a(2) = 1729 = 1^3 + 12^3 = 9^3 + 10^3. a(3) = 1009 = 1^3 + 2^3 + 10^3 = 4^3 + 6^3 + 9^3.
Links
Programs
-
Maple
G:= mul(1+t*x^(i^3), i=1..35): R:= -1: for m from 2 do C:= expand(coeff(G,t,m)): C2:= convert(select(s -> subs(x=1,s)=2, C),list); v:= min(map(degree,C2)); if v >= 36^3 + add(i^3,i=1..m-1) then break fi; R:= R,v; od: R; # Robert Israel, Jul 08 2024
Extensions
a(15)-a(27) from Robert Israel, Jul 08 2024
a(28)-a(39) from Michael S. Branicky, Jul 10 2024