cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374427 Triangle read by rows: T(n, k) = n! * 2^k * hypergeom([-k], [-n], -1/2).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 10, 17, 29, 24, 42, 74, 131, 233, 120, 216, 390, 706, 1281, 2329, 720, 1320, 2424, 4458, 8210, 15139, 27949, 5040, 9360, 17400, 32376, 60294, 112378, 209617, 391285, 40320, 75600, 141840, 266280, 500184, 940074, 1767770, 3325923, 6260561
Offset: 0

Views

Author

Peter Luschny, Jul 28 2024

Keywords

Examples

			     1
     1      1
     2      3      5
     6     10     17     29
    24     42     74    131    233
   120    216    390    706   1281   2329
   720   1320   2424   4458   8210  15139  27949
  5040   9360  17400  32376  60294 112378 209617 391285
 40320  75600 141840 266280 500184 940074 1767770 3325923 6260561
362880 685440 1295280 2448720 4631160 8762136 16584198 31400626 59475329
		

Crossrefs

Cf. A000354 (main diagonal), A374428, A007680 (col k=0).

Programs

  • Maple
    A374427 := proc(n,k)
        (-1)^k*add((-2)^(k-j)*binomial(k,k-j)*(n-j)!,j=0..k) ;
    end proc:
    seq(seq(A374427(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Aug 30 2024
  • Mathematica
    T[n_, k_] := n! 2^k Hypergeometric1F1[-k, -n, -1/2];
    (* Alternative: )
    T[n_, k_] := (-1)^k*Sum[(-2)^(k - j)*Binomial[k, k - j]*((n - j)!), {j, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Detlef Meya, Aug 12 2024 *)

Formula

T(n, k) = (-1)^k*Sum_{j=0..k} (-2)^(k - j)*binomial(k, k - j)*(n - j)!. - Detlef Meya, Aug 12 2024