A374427 Triangle read by rows: T(n, k) = n! * 2^k * hypergeom([-k], [-n], -1/2).
1, 1, 1, 2, 3, 5, 6, 10, 17, 29, 24, 42, 74, 131, 233, 120, 216, 390, 706, 1281, 2329, 720, 1320, 2424, 4458, 8210, 15139, 27949, 5040, 9360, 17400, 32376, 60294, 112378, 209617, 391285, 40320, 75600, 141840, 266280, 500184, 940074, 1767770, 3325923, 6260561
Offset: 0
Examples
1 1 1 2 3 5 6 10 17 29 24 42 74 131 233 120 216 390 706 1281 2329 720 1320 2424 4458 8210 15139 27949 5040 9360 17400 32376 60294 112378 209617 391285 40320 75600 141840 266280 500184 940074 1767770 3325923 6260561 362880 685440 1295280 2448720 4631160 8762136 16584198 31400626 59475329
Programs
-
Maple
A374427 := proc(n,k) (-1)^k*add((-2)^(k-j)*binomial(k,k-j)*(n-j)!,j=0..k) ; end proc: seq(seq(A374427(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Aug 30 2024
-
Mathematica
T[n_, k_] := n! 2^k Hypergeometric1F1[-k, -n, -1/2]; (* Alternative: ) T[n_, k_] := (-1)^k*Sum[(-2)^(k - j)*Binomial[k, k - j]*((n - j)!), {j, 0, k}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Detlef Meya, Aug 12 2024 *)
Formula
T(n, k) = (-1)^k*Sum_{j=0..k} (-2)^(k - j)*binomial(k, k - j)*(n - j)!. - Detlef Meya, Aug 12 2024