cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A374431 Row product of A374433.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 72, 7, 16, 27, 800, 11, 5184, 13, 6272, 30375, 256, 17, 373248, 19, 640000, 750141, 247808, 23, 26873856, 3125, 1384448, 19683, 39337984, 29, 30233088000000, 31, 65536, 235782657, 37879808, 1313046875, 139314069504, 37, 189267968, 3502727631
Offset: 0

Views

Author

Peter Luschny, Jul 10 2024

Keywords

Crossrefs

Cf. A374433, A374430 (odd bisection).

Programs

  • Maple
    seq(mul(A374433(n, k), k = 0..n), n=0..40);
  • Mathematica
    nn = 39; Do[Set[s[i], FactorInteger[i][[All, 1]]], {i, 0, nn}]; s[0] = {1}; Array[Product[Times @@ Intersection[s[k], s[#]], {k, 0, #}] &, nn + 1, 0] (* Michael De Vlieger, Jul 11 2024 *)
  • Python
    from math import prod
    print([prod([A374433(n, k) for k in range(n + 1)]) for n in range(40)])

A374432 Row sums of A374433.

Original entry on oeis.org

1, 2, 4, 6, 7, 10, 16, 14, 13, 16, 28, 22, 31, 26, 40, 46, 25, 34, 46, 38, 55, 66, 64, 46, 61, 46, 76, 46, 79, 58, 136, 62, 49, 106, 100, 118, 91, 74, 112, 126, 109, 82, 196, 86, 127, 136, 136, 94, 121, 92, 136, 166, 151, 106, 136, 190, 157, 186, 172, 118, 271
Offset: 0

Views

Author

Peter Luschny, Jul 10 2024

Keywords

Crossrefs

Cf. A374433, A176345 (a(n + 1) - 1).

Programs

  • Maple
    seq(add(A374433(n, k), k = 0..n), n=0..60);
  • Mathematica
    nn = 120; Do[Set[s[i], FactorInteger[i][[All, 1]]], {i, 0, nn}]; s[0] = {1};
    Table[Sum[Times @@ Intersection[s[k], s[n]], {k, 0, n}], {n, 0, nn}] (* Michael De Vlieger, Jul 11 2024 *)
  • Python
    print([sum([A374433(n, k) for k in range(n + 1)]) for n in range(61)])

A374434 Triangle read by rows: T(n, k) = Product_{p in PF(n) symmetric difference PF(k)} p, where PF(a) is the set of the prime factors of a.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 3, 6, 1, 2, 2, 1, 6, 1, 5, 5, 10, 15, 10, 1, 6, 6, 3, 2, 3, 30, 1, 7, 7, 14, 21, 14, 35, 42, 1, 2, 2, 1, 6, 1, 10, 3, 14, 1, 3, 3, 6, 1, 6, 15, 2, 21, 6, 1, 10, 10, 5, 30, 5, 2, 15, 70, 5, 30, 1, 11, 11, 22, 33, 22, 55, 66, 77, 22, 33, 110, 1
Offset: 0

Views

Author

Peter Luschny, Jul 10 2024

Keywords

Examples

			  [ 0]  1;
  [ 1]  1,  1;
  [ 2]  2,  2,  1;
  [ 3]  3,  3,  6,  1;
  [ 4]  2,  2,  1,  6,  1;
  [ 5]  5,  5, 10, 15, 10,  1;
  [ 6]  6,  6,  3,  2,  3, 30,  1;
  [ 7]  7,  7, 14, 21, 14, 35, 42,  1;
  [ 8]  2,  2,  1,  6,  1, 10,  3, 14,  1;
  [ 9]  3,  3,  6,  1,  6, 15,  2, 21,  6,  1;
  [10] 10, 10,  5, 30,  5,  2, 15, 70,  5, 30,   1;
  [11] 11, 11, 22, 33, 22, 55, 66, 77, 22, 33, 110, 1;
		

Crossrefs

Family: A374433 (intersection), this sequence (symmetric difference), A374435 (difference), A374436 (union).
Cf. A007947 (column 0), A000034 (central terms), A050873 (gcd).

Programs

  • Maple
    PF := n -> ifelse(n = 0, {}, NumberTheory:-PrimeFactors(n)):
    A374434 := (n, k) -> mul(symmdiff(PF(n), PF(k))):
    seq(print(seq(A374434(n, k), k = 0..n)), n = 0..11);
  • Mathematica
    nn = 12; Do[Set[s[i], FactorInteger[i][[All, 1]]], {i, 0, nn}]; s[0] = {1}; Table[Times @@ SymmetricDifference[s[k], s[n]], {n, 0, nn}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 11 2024 *)
  • Python
    # Function A374434 defined in A374433.
    for n in range(11): print([A374434(n, k) for k in range(n + 1)])

Formula

From Michael De Vlieger, Jul 11 2024: (Start)
T(0,0) = T(n,0) = rad(n)/rad(0) = 1 where rad = A007947;
T(n,k) = rad(k*n)/rad(gcd(k,n))
= A007947(k*n)/A007947(S(n,k)) where S = A050873
= A374436(n,k)/A374433(n,k). (End)

A374435 Triangle read by rows: T(n, k) = Product_{p in PF(n) difference PF(k)} p, where PF(a) is the set of the prime factors of a.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 3, 3, 1, 2, 2, 1, 2, 1, 5, 5, 5, 5, 5, 1, 6, 6, 3, 2, 3, 6, 1, 7, 7, 7, 7, 7, 7, 7, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 3, 1, 3, 3, 1, 3, 3, 1, 10, 10, 5, 10, 5, 2, 5, 10, 5, 10, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1
Offset: 0

Views

Author

Peter Luschny, Jul 10 2024

Keywords

Examples

			  [ 0]  1;
  [ 1]  1,  1;
  [ 2]  2,  2,  1;
  [ 3]  3,  3,  3,  1;
  [ 4]  2,  2,  1,  2,  1;
  [ 5]  5,  5,  5,  5,  5,  1;
  [ 6]  6,  6,  3,  2,  3,  6,  1;
  [ 7]  7,  7,  7,  7,  7,  7,  7,  1;
  [ 8]  2,  2,  1,  2,  1,  2,  1,  2,  1;
  [ 9]  3,  3,  3,  1,  3,  3,  1,  3,  3,  1;
  [10] 10, 10,  5, 10,  5,  2,  5, 10,  5, 10,  1;
  [11] 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1;
		

Crossrefs

Family: A374433 (intersection), A374434 (symmetric difference), this sequence (difference), A374436 (union).
Cf. A007947 (column 0), A000034 (central terms).

Programs

  • Maple
    PF := n -> ifelse(n = 0, {}, NumberTheory:-PrimeFactors(n)):
    A374435 := (n, k) -> mul(PF(n) minus PF(k)):
    seq(print(seq(A374435(n, k), k = 0..n)), n = 0..11);
  • Mathematica
    nn = 12; Do[Set[s[i], FactorInteger[i][[All, 1]]], {i, 0, nn}]; s[0] = {1}; Table[Apply[Times, Complement[s[n], s[k]]], {n, 0, nn}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 11 2024 *)
  • Python
    # Function A374435 defined in A374433.
    for n in range(12): print([A374435(n, k) for k in range(n + 1)])

A374436 Triangle read by rows: T(n, k) = Product_{p in PF(n) union PF(k)} p, where PF(a) is the set of the prime factors of a.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 6, 3, 2, 2, 2, 6, 2, 5, 5, 10, 15, 10, 5, 6, 6, 6, 6, 6, 30, 6, 7, 7, 14, 21, 14, 35, 42, 7, 2, 2, 2, 6, 2, 10, 6, 14, 2, 3, 3, 6, 3, 6, 15, 6, 21, 6, 3, 10, 10, 10, 30, 10, 10, 30, 70, 10, 30, 10, 11, 11, 22, 33, 22, 55, 66, 77, 22, 33, 110, 11
Offset: 0

Views

Author

Peter Luschny, Jul 10 2024

Keywords

Examples

			  [ 0]  1;
  [ 1]  1,  1;
  [ 2]  2,  2,  2;
  [ 3]  3,  3,  6,  3;
  [ 4]  2,  2,  2,  6,  2;
  [ 5]  5,  5, 10, 15, 10,  5;
  [ 6]  6,  6,  6,  6,  6, 30,  6;
  [ 7]  7,  7, 14, 21, 14, 35, 42,  7;
  [ 8]  2,  2,  2,  6,  2, 10,  6, 14,  2;
  [ 9]  3,  3,  6,  3,  6, 15,  6, 21,  6,  3;
  [10] 10, 10, 10, 30, 10, 10, 30, 70, 10, 30,  10;
  [11] 11, 11, 22, 33, 22, 55, 66, 77, 22, 33, 110, 11;
		

Crossrefs

Family: A374433 (intersection), A374434 (symmetric difference), A374435 (difference), this sequence (union).
Cf. A007947 (column 0, main diagonal), A099985 (central terms).

Programs

  • Maple
    PF := n -> ifelse(n = 0, {}, NumberTheory:-PrimeFactors(n)):
    A374436 := (n, k) -> mul(PF(n) union PF(k)):
    seq(print(seq(A374436(n, k), k = 0..n)), n = 0..11);
  • Mathematica
    nn = 12; Do[Set[s[i], FactorInteger[i][[All, 1]]], {i, 0, nn}]; s[0] = {1}; Table[Apply[Times, Union[s[k], s[n]]], {n, 0, nn}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 11 2024 *)
  • Python
    # Function A374436 defined in A374433.
    for n in range(12): print([A374436(n, k) for k in range(n + 1)])

Formula

T(0,0) = T(n,0) = 1; T(n,k) = rad(k*n) where rad = A007947. - Michael De Vlieger, Jul 11 2024

A374430 Odd bisection of A374431.

Original entry on oeis.org

1, 3, 5, 7, 27, 11, 13, 30375, 17, 19, 750141, 23, 3125, 19683, 29, 31, 235782657, 1313046875, 37, 3502727631, 41, 43, 28025208984375, 47, 823543, 634465620819, 53, 7863818359375, 7971951402153, 59, 61, 422112982235053221, 453238525390625
Offset: 0

Views

Author

Peter Luschny, Jul 10 2024

Keywords

Crossrefs

Programs

  • Maple
    PF := n -> ifelse(n = 0, {}, NumberTheory:-PrimeFactors(n)):
    T := (n, k) -> mul(PF(n) intersect PF(k)):
    seq(mul(T(2*n+1, k), k = 0..2*n+1), n = 0..20);
  • Mathematica
    nn = 65; Do[Set[s[i], FactorInteger[i][[All, 1]]], {i, 0, nn}]; Table[Product[Times @@ Intersection[s[k], s[n]], {k, 0, n}], {n, 1, nn, 2}] (* Michael De Vlieger, Jul 11 2024 *)

A374443 Triangle read by rows: T(n, k) = rad(gcd(n, k)) if n, k > 0, T(0, 0) = 1, where rad = A007947 and gcd = A109004.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 1, 1, 3, 2, 1, 2, 1, 2, 5, 1, 1, 1, 1, 5, 6, 1, 2, 3, 2, 1, 6, 7, 1, 1, 1, 1, 1, 1, 7, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6
Offset: 0

Views

Author

Keywords

Examples

			Triangle starts:
  [ 0]  1;
  [ 1]  1, 1;
  [ 2]  2, 1, 2;
  [ 3]  3, 1, 1, 3;
  [ 4]  2, 1, 2, 1, 2;
  [ 5]  5, 1, 1, 1, 1, 5;
  [ 6]  6, 1, 2, 3, 2, 1, 6;
  [ 7]  7, 1, 1, 1, 1, 1, 1, 7;
  [ 8]  2, 1, 2, 1, 2, 1, 2, 1, 2;
  [ 9]  3, 1, 1, 3, 1, 1, 3, 1, 1, 3;
  [10] 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10;
  [11] 11, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1, 11;
		

Crossrefs

Variant: A374433.
Cf. A374442 (row sums), A007947, A109004.

Programs

  • Maple
    rad := n -> ifelse(n = 0, 1, NumberTheory:-Radical(n)):
    T := (n, k) -> rad(igcd(n, k)); seq(seq(T(n, k), k = 0..n), n = 0..11);
  • Mathematica
    rad[n_] := If[n == 0, 1, Product[p, {p, Select[Divisors[n], PrimeQ]}]];
    T[n_, k_] := rad[GCD[n, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten
  • Python
    from math import gcd, prod
    from sympy.ntheory import primefactors
    def T(n, k) -> int: return prod(primefactors(gcd(n, k)))
    for n in range(16): print([T(n, k) for k in range(n+1)])  # Peter Luschny, Jun 22 2025
Showing 1-7 of 7 results.