Original entry on oeis.org
1, 1, 2, 3, 4, 5, 72, 7, 16, 27, 800, 11, 5184, 13, 6272, 30375, 256, 17, 373248, 19, 640000, 750141, 247808, 23, 26873856, 3125, 1384448, 19683, 39337984, 29, 30233088000000, 31, 65536, 235782657, 37879808, 1313046875, 139314069504, 37, 189267968, 3502727631
Offset: 0
-
seq(mul(A374433(n, k), k = 0..n), n=0..40);
-
nn = 39; Do[Set[s[i], FactorInteger[i][[All, 1]]], {i, 0, nn}]; s[0] = {1}; Array[Product[Times @@ Intersection[s[k], s[#]], {k, 0, #}] &, nn + 1, 0] (* Michael De Vlieger, Jul 11 2024 *)
-
from math import prod
print([prod([A374433(n, k) for k in range(n + 1)]) for n in range(40)])
Original entry on oeis.org
1, 2, 4, 6, 7, 10, 16, 14, 13, 16, 28, 22, 31, 26, 40, 46, 25, 34, 46, 38, 55, 66, 64, 46, 61, 46, 76, 46, 79, 58, 136, 62, 49, 106, 100, 118, 91, 74, 112, 126, 109, 82, 196, 86, 127, 136, 136, 94, 121, 92, 136, 166, 151, 106, 136, 190, 157, 186, 172, 118, 271
Offset: 0
-
seq(add(A374433(n, k), k = 0..n), n=0..60);
-
nn = 120; Do[Set[s[i], FactorInteger[i][[All, 1]]], {i, 0, nn}]; s[0] = {1};
Table[Sum[Times @@ Intersection[s[k], s[n]], {k, 0, n}], {n, 0, nn}] (* Michael De Vlieger, Jul 11 2024 *)
-
print([sum([A374433(n, k) for k in range(n + 1)]) for n in range(61)])
A374434
Triangle read by rows: T(n, k) = Product_{p in PF(n) symmetric difference PF(k)} p, where PF(a) is the set of the prime factors of a.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 3, 6, 1, 2, 2, 1, 6, 1, 5, 5, 10, 15, 10, 1, 6, 6, 3, 2, 3, 30, 1, 7, 7, 14, 21, 14, 35, 42, 1, 2, 2, 1, 6, 1, 10, 3, 14, 1, 3, 3, 6, 1, 6, 15, 2, 21, 6, 1, 10, 10, 5, 30, 5, 2, 15, 70, 5, 30, 1, 11, 11, 22, 33, 22, 55, 66, 77, 22, 33, 110, 1
Offset: 0
[ 0] 1;
[ 1] 1, 1;
[ 2] 2, 2, 1;
[ 3] 3, 3, 6, 1;
[ 4] 2, 2, 1, 6, 1;
[ 5] 5, 5, 10, 15, 10, 1;
[ 6] 6, 6, 3, 2, 3, 30, 1;
[ 7] 7, 7, 14, 21, 14, 35, 42, 1;
[ 8] 2, 2, 1, 6, 1, 10, 3, 14, 1;
[ 9] 3, 3, 6, 1, 6, 15, 2, 21, 6, 1;
[10] 10, 10, 5, 30, 5, 2, 15, 70, 5, 30, 1;
[11] 11, 11, 22, 33, 22, 55, 66, 77, 22, 33, 110, 1;
Family:
A374433 (intersection), this sequence (symmetric difference),
A374435 (difference),
A374436 (union).
-
PF := n -> ifelse(n = 0, {}, NumberTheory:-PrimeFactors(n)):
A374434 := (n, k) -> mul(symmdiff(PF(n), PF(k))):
seq(print(seq(A374434(n, k), k = 0..n)), n = 0..11);
-
nn = 12; Do[Set[s[i], FactorInteger[i][[All, 1]]], {i, 0, nn}]; s[0] = {1}; Table[Times @@ SymmetricDifference[s[k], s[n]], {n, 0, nn}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 11 2024 *)
-
# Function A374434 defined in A374433.
for n in range(11): print([A374434(n, k) for k in range(n + 1)])
A374435
Triangle read by rows: T(n, k) = Product_{p in PF(n) difference PF(k)} p, where PF(a) is the set of the prime factors of a.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 3, 3, 1, 2, 2, 1, 2, 1, 5, 5, 5, 5, 5, 1, 6, 6, 3, 2, 3, 6, 1, 7, 7, 7, 7, 7, 7, 7, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 3, 1, 3, 3, 1, 3, 3, 1, 10, 10, 5, 10, 5, 2, 5, 10, 5, 10, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1
Offset: 0
[ 0] 1;
[ 1] 1, 1;
[ 2] 2, 2, 1;
[ 3] 3, 3, 3, 1;
[ 4] 2, 2, 1, 2, 1;
[ 5] 5, 5, 5, 5, 5, 1;
[ 6] 6, 6, 3, 2, 3, 6, 1;
[ 7] 7, 7, 7, 7, 7, 7, 7, 1;
[ 8] 2, 2, 1, 2, 1, 2, 1, 2, 1;
[ 9] 3, 3, 3, 1, 3, 3, 1, 3, 3, 1;
[10] 10, 10, 5, 10, 5, 2, 5, 10, 5, 10, 1;
[11] 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1;
Family:
A374433 (intersection),
A374434 (symmetric difference), this sequence (difference),
A374436 (union).
-
PF := n -> ifelse(n = 0, {}, NumberTheory:-PrimeFactors(n)):
A374435 := (n, k) -> mul(PF(n) minus PF(k)):
seq(print(seq(A374435(n, k), k = 0..n)), n = 0..11);
-
nn = 12; Do[Set[s[i], FactorInteger[i][[All, 1]]], {i, 0, nn}]; s[0] = {1}; Table[Apply[Times, Complement[s[n], s[k]]], {n, 0, nn}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 11 2024 *)
-
# Function A374435 defined in A374433.
for n in range(12): print([A374435(n, k) for k in range(n + 1)])
A374436
Triangle read by rows: T(n, k) = Product_{p in PF(n) union PF(k)} p, where PF(a) is the set of the prime factors of a.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 3, 3, 6, 3, 2, 2, 2, 6, 2, 5, 5, 10, 15, 10, 5, 6, 6, 6, 6, 6, 30, 6, 7, 7, 14, 21, 14, 35, 42, 7, 2, 2, 2, 6, 2, 10, 6, 14, 2, 3, 3, 6, 3, 6, 15, 6, 21, 6, 3, 10, 10, 10, 30, 10, 10, 30, 70, 10, 30, 10, 11, 11, 22, 33, 22, 55, 66, 77, 22, 33, 110, 11
Offset: 0
[ 0] 1;
[ 1] 1, 1;
[ 2] 2, 2, 2;
[ 3] 3, 3, 6, 3;
[ 4] 2, 2, 2, 6, 2;
[ 5] 5, 5, 10, 15, 10, 5;
[ 6] 6, 6, 6, 6, 6, 30, 6;
[ 7] 7, 7, 14, 21, 14, 35, 42, 7;
[ 8] 2, 2, 2, 6, 2, 10, 6, 14, 2;
[ 9] 3, 3, 6, 3, 6, 15, 6, 21, 6, 3;
[10] 10, 10, 10, 30, 10, 10, 30, 70, 10, 30, 10;
[11] 11, 11, 22, 33, 22, 55, 66, 77, 22, 33, 110, 11;
Family:
A374433 (intersection),
A374434 (symmetric difference),
A374435 (difference), this sequence (union).
-
PF := n -> ifelse(n = 0, {}, NumberTheory:-PrimeFactors(n)):
A374436 := (n, k) -> mul(PF(n) union PF(k)):
seq(print(seq(A374436(n, k), k = 0..n)), n = 0..11);
-
nn = 12; Do[Set[s[i], FactorInteger[i][[All, 1]]], {i, 0, nn}]; s[0] = {1}; Table[Apply[Times, Union[s[k], s[n]]], {n, 0, nn}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 11 2024 *)
-
# Function A374436 defined in A374433.
for n in range(12): print([A374436(n, k) for k in range(n + 1)])
Original entry on oeis.org
1, 3, 5, 7, 27, 11, 13, 30375, 17, 19, 750141, 23, 3125, 19683, 29, 31, 235782657, 1313046875, 37, 3502727631, 41, 43, 28025208984375, 47, 823543, 634465620819, 53, 7863818359375, 7971951402153, 59, 61, 422112982235053221, 453238525390625
Offset: 0
-
PF := n -> ifelse(n = 0, {}, NumberTheory:-PrimeFactors(n)):
T := (n, k) -> mul(PF(n) intersect PF(k)):
seq(mul(T(2*n+1, k), k = 0..2*n+1), n = 0..20);
-
nn = 65; Do[Set[s[i], FactorInteger[i][[All, 1]]], {i, 0, nn}]; Table[Product[Times @@ Intersection[s[k], s[n]], {k, 0, n}], {n, 1, nn, 2}] (* Michael De Vlieger, Jul 11 2024 *)
A374443
Triangle read by rows: T(n, k) = rad(gcd(n, k)) if n, k > 0, T(0, 0) = 1, where rad = A007947 and gcd = A109004.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 1, 1, 3, 2, 1, 2, 1, 2, 5, 1, 1, 1, 1, 5, 6, 1, 2, 3, 2, 1, 6, 7, 1, 1, 1, 1, 1, 1, 7, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6
Offset: 0
Triangle starts:
[ 0] 1;
[ 1] 1, 1;
[ 2] 2, 1, 2;
[ 3] 3, 1, 1, 3;
[ 4] 2, 1, 2, 1, 2;
[ 5] 5, 1, 1, 1, 1, 5;
[ 6] 6, 1, 2, 3, 2, 1, 6;
[ 7] 7, 1, 1, 1, 1, 1, 1, 7;
[ 8] 2, 1, 2, 1, 2, 1, 2, 1, 2;
[ 9] 3, 1, 1, 3, 1, 1, 3, 1, 1, 3;
[10] 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10;
[11] 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11;
-
rad := n -> ifelse(n = 0, 1, NumberTheory:-Radical(n)):
T := (n, k) -> rad(igcd(n, k)); seq(seq(T(n, k), k = 0..n), n = 0..11);
-
rad[n_] := If[n == 0, 1, Product[p, {p, Select[Divisors[n], PrimeQ]}]];
T[n_, k_] := rad[GCD[n, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten
-
from math import gcd, prod
from sympy.ntheory import primefactors
def T(n, k) -> int: return prod(primefactors(gcd(n, k)))
for n in range(16): print([T(n, k) for k in range(n+1)]) # Peter Luschny, Jun 22 2025
Showing 1-7 of 7 results.