cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374507 Prime numbers that precede and follow consecutive balanced primes.

Original entry on oeis.org

7829, 32491, 40087, 40099, 50423, 104009, 128461, 166967, 167747, 169307, 186259, 203011, 206209, 245759, 253987, 260387, 267581, 295271, 297403, 311021, 331159, 336163, 353081, 370009, 381389, 396079, 396449, 442843, 455431, 481513, 577867, 596599, 605861
Offset: 1

Views

Author

Kishin Ikemoto, Jul 09 2024

Keywords

Examples

			7817, 7823, 7829, 7841, and 7853 are consecutive primes. Since 7823 and 7841 are consecutive balanced primes (7817 + 7829 = 2*7823, 7829 + 7853 = 2*7841), 7829 is in this sequence.
		

Crossrefs

Cf. A006562 (balanced primes).

Programs

  • C
    #include 
    #define K 5
    #include 
    int main(void) {
        int x[K], primej, z, md, n, maxd, count;
        x[0] = 2; x[1] = 3; x[2] = 5; x[3] = 7; x[4] = 11;
        primej = 1;
        n = 13;
        maxd = 3;
        count = 0;
        while (count < 50) {
            for (md = 2; md <= maxd; md++) {
                if (n % md == 0) {
                    primej = 0;
                }
            }
            if (primej == 1) {
                x[0] = x[1]; x[1] = x[2]; x[2] = x[3]; x[3] = x[4]; x[4] = n;
                if (x[0] + x[2] == 2 * x[1] && x[2] + x[4] == 2 * x[3]) {
                    z = x[2];
                    count++;
                    printf("%d %d\n", count, z);
                }
            }
            n += 2;
            maxd = sqrt((double)n);
            primej = 1;
        }
        return 0;
    }
  • Maple
    p,q,r,s,t:= 2,3,5,7,11:
    count:= 0: R:= NULL:
    while count < 40 do
     p,q,r,s:= q,r,s,t;
     t:= nextprime(t);
     if p+r = 2*q and r+t = 2*s then
       count:= count+1;
       R:= R,r;
     fi;
    od:
    R; # Robert Israel, Jul 11 2024
  • Mathematica
    Select[Partition[Prime[Range[50000]],5,1],#[[2]]==(#[[1]]+#[[3]])/2&&#[[4]]==(#[[3]]+#[[5]])/2&][[;;,3]] (* Harvey P. Dale, Sep 17 2024 *)