A374507 Prime numbers that precede and follow consecutive balanced primes.
7829, 32491, 40087, 40099, 50423, 104009, 128461, 166967, 167747, 169307, 186259, 203011, 206209, 245759, 253987, 260387, 267581, 295271, 297403, 311021, 331159, 336163, 353081, 370009, 381389, 396079, 396449, 442843, 455431, 481513, 577867, 596599, 605861
Offset: 1
Keywords
Examples
7817, 7823, 7829, 7841, and 7853 are consecutive primes. Since 7823 and 7841 are consecutive balanced primes (7817 + 7829 = 2*7823, 7829 + 7853 = 2*7841), 7829 is in this sequence.
Links
- Kishin Ikemoto, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A006562 (balanced primes).
Programs
-
C
#include
#define K 5 #include int main(void) { int x[K], primej, z, md, n, maxd, count; x[0] = 2; x[1] = 3; x[2] = 5; x[3] = 7; x[4] = 11; primej = 1; n = 13; maxd = 3; count = 0; while (count < 50) { for (md = 2; md <= maxd; md++) { if (n % md == 0) { primej = 0; } } if (primej == 1) { x[0] = x[1]; x[1] = x[2]; x[2] = x[3]; x[3] = x[4]; x[4] = n; if (x[0] + x[2] == 2 * x[1] && x[2] + x[4] == 2 * x[3]) { z = x[2]; count++; printf("%d %d\n", count, z); } } n += 2; maxd = sqrt((double)n); primej = 1; } return 0; } -
Maple
p,q,r,s,t:= 2,3,5,7,11: count:= 0: R:= NULL: while count < 40 do p,q,r,s:= q,r,s,t; t:= nextprime(t); if p+r = 2*q and r+t = 2*s then count:= count+1; R:= R,r; fi; od: R; # Robert Israel, Jul 11 2024
-
Mathematica
Select[Partition[Prime[Range[50000]],5,1],#[[2]]==(#[[1]]+#[[3]])/2&[[4]]==(#[[3]]+#[[5]])/2&][[;;,3]] (* Harvey P. Dale, Sep 17 2024 *)