cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Kishin Ikemoto

Kishin Ikemoto's wiki page.

Kishin Ikemoto has authored 2 sequences.

A376740 Numbers that have at least one two-digit prime factor.

Original entry on oeis.org

11, 13, 17, 19, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 102, 104, 106, 110, 111, 114, 115, 116, 117
Offset: 1

Author

Kishin Ikemoto, Oct 03 2024

Keywords

Comments

Subsequence of A068191, first differing at A068191(55) = 101 which is not a term here.
Numbers k such that gcd(k,10978895066407230594062391177770267) > 1. - Chai Wah Wu, Nov 18 2024 [The big number is A109819(10) - Alois P. Heinz, Nov 18 2024]
The asymptotic density of this sequence is A051953(A109819(10))/A109819(10) = 1329644281346285477858013527/2807455661493975149742813527 = 0.473611... . - Amiram Eldar, Nov 19 2024

Examples

			201 = 3*67 is in this sequence because it has one two-digit prime factor.
202 = 2*101 is not, because neither of them is two-digit.
		

Crossrefs

Programs

  • Maple
    q:= convert(select(isprime, [seq(i,i=11 .. 99, 2)]),`*`):
    filter:= n -> igcd(n,q) > 1:
    select(filter, [$1..200]); # Robert Israel, Nov 18 2024
  • Mathematica
    A376740Q[k_] := GCD[k, 10978895066407230594062391177770267] > 1;
    Select[Range[200], A376740Q] (* Paolo Xausa, Jun 24 2025 *)
  • PARI
    is(k) = {forprime(p = 11, 97, if(!(k % p), return(1))); 0;} \\ Amiram Eldar, Nov 19 2024
  • Python
    def ok(n): return any(n%p == 0 for p in [11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97])
    print([k for k in range(1, 118) if ok(k)]) # Michael S. Branicky, Oct 15 2024
    

Formula

a(n + A051953(A109819(10))) = a(n) + A109819(10). - Amiram Eldar, Nov 19 2024

A374507 Prime numbers that precede and follow consecutive balanced primes.

Original entry on oeis.org

7829, 32491, 40087, 40099, 50423, 104009, 128461, 166967, 167747, 169307, 186259, 203011, 206209, 245759, 253987, 260387, 267581, 295271, 297403, 311021, 331159, 336163, 353081, 370009, 381389, 396079, 396449, 442843, 455431, 481513, 577867, 596599, 605861
Offset: 1

Author

Kishin Ikemoto, Jul 09 2024

Keywords

Examples

			7817, 7823, 7829, 7841, and 7853 are consecutive primes. Since 7823 and 7841 are consecutive balanced primes (7817 + 7829 = 2*7823, 7829 + 7853 = 2*7841), 7829 is in this sequence.
		

Crossrefs

Cf. A006562 (balanced primes).

Programs

  • C
    #include 
    #define K 5
    #include 
    int main(void) {
        int x[K], primej, z, md, n, maxd, count;
        x[0] = 2; x[1] = 3; x[2] = 5; x[3] = 7; x[4] = 11;
        primej = 1;
        n = 13;
        maxd = 3;
        count = 0;
        while (count < 50) {
            for (md = 2; md <= maxd; md++) {
                if (n % md == 0) {
                    primej = 0;
                }
            }
            if (primej == 1) {
                x[0] = x[1]; x[1] = x[2]; x[2] = x[3]; x[3] = x[4]; x[4] = n;
                if (x[0] + x[2] == 2 * x[1] && x[2] + x[4] == 2 * x[3]) {
                    z = x[2];
                    count++;
                    printf("%d %d\n", count, z);
                }
            }
            n += 2;
            maxd = sqrt((double)n);
            primej = 1;
        }
        return 0;
    }
  • Maple
    p,q,r,s,t:= 2,3,5,7,11:
    count:= 0: R:= NULL:
    while count < 40 do
     p,q,r,s:= q,r,s,t;
     t:= nextprime(t);
     if p+r = 2*q and r+t = 2*s then
       count:= count+1;
       R:= R,r;
     fi;
    od:
    R; # Robert Israel, Jul 11 2024
  • Mathematica
    Select[Partition[Prime[Range[50000]],5,1],#[[2]]==(#[[1]]+#[[3]])/2&&#[[4]]==(#[[3]]+#[[5]])/2&][[;;,3]] (* Harvey P. Dale, Sep 17 2024 *)