A374526 Similar to A374525, but for each starting matrix with a choice of whether to sort by columns or rows first, such that the total number of sorting steps for this matrix is minimized.
2, 7, 7, 2, 45, 254, 212, 1, 650, 19500, 44463, 899, 20, 4, 24520, 4347402, 27123390, 1978573, 72427, 7940, 144, 36, 2625117, 3107244605, 53818094633, 11242079280, 512469215, 35810192, 1002242, 148572, 2304, 576, 836488618
Offset: 1
Examples
The triangle begins \ k 0 1 2 3 4 5 6 7 n -------------------------------------------------------- 1 | 2, 2 | 7, 7, 2, 3 | 45, 254, 212, 1, 4 | 650, 19500, 44463, 899, 20, 4, 5 | 24520, 4347402, 27123390, 1978573, 72427, 7940, 144, 36 . T(3,3) = 1 because only one ([1,1,0; 1,0,1; 0,1,0]) of the A374525(3,3) = 5 matrices needs 3 sort steps irrespective of the initial sorting direction, whereas the other 4 ([0,1,1; 1,1,0; 0,0,1], [1,0,1; 0,1,1; 1,0,0], [1,0,1; 1,1,0; 0,0,1], [1,1,0; 0,1,1; 1,0,0]) can be sorted in a single step by choosing the "better" direction. . Sorting by Rows Cols Rows Cols stable 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 3 sort steps needed for both choices Cols Rows Cols Rows stable of initial sorting 1 1 0 0 1 1 0 1 0 0 0 1 0 0 1 direction 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 0 . Rows Cols stable Cols Rows Cols Rows stable 0 1 1 0 0 1 0 0 1 | 0 1 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1 | 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 | 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 . 1 0 1 0 1 1 0 1 1 | 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 | 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 | 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 . 1 0 1 0 0 1 0 0 1 | 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 | 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 | 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 . 1 1 0 0 1 1 0 1 1 | 1 1 0 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 | 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 | 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 sort step needed 3 sort steps needed . T(4,5)=4, because there are 4 matrices needing 5 sort steps irrespective of the choice of the initial sorting direction. [1,1,0,1; 1,0,1,1; 0,1,1,0; 1,1,0,0], [1,1,1,0; 1,0,1,1; 0,1,0,1; 1,1,0,0], [1,1,0,1; 1,0,1,1; 1,1,0,0; 0,1,1,0], [1,1,1,0; 1,0,1,1; 1,1,0,0; 0,1,0,1]. Routes of sorting for the first of these matrices, both with 5 steps: Cols Rows Cols Rows Cols Rows stable 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 or Rows Cols Rows Cols Rows Cols stable 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0
Programs
-
PARI
numberOfSortSteps(M, f) = {my(c=0, M1 = if (f == 0, vecsort(M), vecsort(M~)~)); if (M != M1, M = M1; c++); while (1, f = !f; M1 = if (f == 0, vecsort(M), vecsort(M~)~); if (M != M1, M = M1; c++, return(c)))}; minNumberOfSortSteps(M) = min(numberOfSortSteps(M, 0), numberOfSortSteps(M, 1)); a374526(n) = {my(v = vector(n*n), M = matrix(n,n)); while (1, v[minNumberOfSortSteps(M) + 1]++; for (i = 1, n, for (j = 1, n, if (M[i,j]++ == 1, break(2), M[i,j]=0); if (i == n && j == n, break(3))))); select(x->x>0, v)};
Formula
T(n,0) = A089006(n).
Sum_{k>=0} T(n,k) = 2^(n^2).
Comments