A374622 Maximum number of vertices of a chordal ring mixed graph CRM(N,c) with diameter n.
8, 10, 18, 16, 32, 34, 50, 44, 72, 74, 98, 88, 128, 130, 162, 148, 200, 202, 242, 224, 288, 290, 338, 316, 392, 394, 450, 424, 512, 514, 578, 548, 648, 650, 722, 688, 800, 802, 882, 844, 968, 970, 1058, 1016, 1152, 1154
Offset: 3
Keywords
Examples
For n = 9, the maximum number of vertices a(9) = 50 is attained by the chordal ring mixed graph CRM(50,9).
Links
- C. Dalfó, G. Erskine, G. Exoo, M. A. Fiol, and J. Tuite, On bipartite (1, 1, k)-mixed graphs, (2024).
Crossrefs
Cf. A371396.
Formula
If n is odd, a(n) = (n+1)^2/2.
Conjecture: If n is even, n=0 mod 4, a(n) = n^2/2+2;
If n (> 2) is even, n=2 mod 4, a(n) = n*(n/2 - 1) + 4.
Conjectured g.f.: 2*(1 + x + 2*x^2 + x^3 + 2*x^4 - 3*x^5 + 4*x^6 - x^7 + x^8)/((1 - x)^3*(1 + x + x^2 + x^3)^2). - Stefano Spezia, Jul 14 2024