A374641 Decimal expansion of log(9/10), negated.
1, 0, 5, 3, 6, 0, 5, 1, 5, 6, 5, 7, 8, 2, 6, 3, 0, 1, 2, 2, 7, 5, 0, 0, 9, 8, 0, 8, 3, 9, 3, 1, 2, 7, 9, 8, 3, 0, 6, 1, 2, 0, 3, 7, 2, 9, 8, 3, 2, 7, 4, 0, 7, 2, 5, 6, 3, 9, 3, 9, 2, 3, 3, 6, 9, 2, 5, 8, 4, 0, 2, 3, 2, 4, 0, 1, 3, 4, 5, 4, 6, 4, 8, 8, 7, 6, 5, 6, 9, 5
Offset: 0
Examples
0.105360515657826301227500980839312798306120372983...
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- David Bailey, Peter Borwein, and Simon Plouffe, On the Rapid Computation of Various Polylogarithmic Constants, Mathematics of Computation, Vol. 66, No. 218, April 1997, pp. 903-913.
- David H. Bailey and Richard E. Crandall, On the Random Character of Fundamental Constant Expansions, Experimental Mathematics, Vol. 10 (2001), Issue 2, pp. 175-190 (preprint draft).
- Eric Weisstein's MathWorld, Polylogarithm.
- Wikipedia, Polylogarithm.
- Index entries for transcendental numbers
Programs
-
Mathematica
First[RealDigits[Log[9/10], 10, 100]]
-
PARI
-log(.9) \\ Charles R Greathouse IV, Jul 17 2024
Formula
Equals Li_1(1/10) = Sum_{k >= 1} 1/(k*10^k), where Li_m(z) is the polylogarithm function. See Bailey et al. (1997), p. 909 and Bailey and Crandall (2001), p. 185.
Equals Integral_{x=0..1} (x^(1/3) - x^(1/5))/log(x) dx. - Kritsada Moomuang, May 27 2025
Comments