A374671 Positive numbers k such that k! and (k+1)! have an equal number of infinitary divisors.
8, 19, 23, 44, 45, 57, 67, 76, 80, 83, 84, 85, 105, 107, 116, 120, 123, 140, 141, 146, 158, 161, 165, 174, 177, 187, 201, 208, 214, 225, 235, 239, 241, 243, 244, 246, 247, 263, 269, 272, 277, 284, 297, 309, 315, 321, 322, 325, 337, 339, 341, 342, 344, 360, 363
Offset: 1
Keywords
Examples
8 is a term since A037445(8!) = A037445(9!) = 64.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
s[n_] := s[n] = Module[{e = FactorInteger[n!][[;; , 2]]}, Sum[DigitCount[e[[k]], 2, 1], {k, 1, Length[e]}]]; Select[Range[2, 400], s[#] == s[# + 1] &]
-
PARI
s(n) = {my(e = factor(n!)[, 2]); sum(k=1, #e, hammingweight(e[k]));} lista(kmax) = {my(s1 = s(1), s2); for(k = 2, kmax, s2 = s(k); if(s1 == s2, print1(k-1, ", ")); s1 = s2);}
Comments