A374704 Number of ways to choose an integer partition of each part of an integer composition of n (A055887) such that the minima are identical.
1, 1, 3, 6, 15, 31, 77, 171, 410, 957, 2275, 5370, 12795, 30366, 72307, 172071, 409875, 976155, 2325804, 5541230, 13204161, 31464226, 74980838, 178684715, 425830008, 1014816979, 2418489344, 5763712776, 13736075563, 32735874251, 78016456122, 185929792353, 443110675075
Offset: 0
Keywords
Examples
The a(0) = 1 through a(4) = 15 ways: () ((1)) ((2)) ((3)) ((4)) ((1,1)) ((1,2)) ((1,3)) ((1),(1)) ((1,1,1)) ((2,2)) ((1),(1,1)) ((1,1,2)) ((1,1),(1)) ((2),(2)) ((1),(1),(1)) ((1,1,1,1)) ((1),(1,2)) ((1,2),(1)) ((1),(1,1,1)) ((1,1),(1,1)) ((1,1,1),(1)) ((1),(1),(1,1)) ((1),(1,1),(1)) ((1,1),(1),(1)) ((1),(1),(1),(1))
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Join@@Table[Tuples[IntegerPartitions/@y], {y,Join@@Permutations/@IntegerPartitions[n]}],SameQ@@Min/@#&]],{n,0,15}]
-
PARI
seq(n) = Vec(1 + sum(k=1, n, -1 + 1/(1 - x^k/prod(j=k, n-k, 1 - x^j, 1 + O(x^(n-k+1)))))) \\ Andrew Howroyd, Dec 29 2024
Formula
G.f.: 1 + Sum_{k>=1} (-1 + 1/(1 - x^k/Product_{j>=k} (1 - x^j))). - Andrew Howroyd, Dec 29 2024
Extensions
a(16) onwards from Andrew Howroyd, Dec 29 2024