cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374721 Number of nonisomorphic spanning trees of the triangular snake nC_3.

Original entry on oeis.org

1, 3, 7, 21, 57, 171, 495, 1485, 4401, 13203, 39447, 118341, 354537, 1063611, 3189375, 9568125, 28700001, 86100003, 258286887, 774860661, 2324542617, 6973627851, 20920765455, 62762296365, 188286534801, 564859604403, 1694577750327, 5083733250981, 15251196564297, 45753589692891
Offset: 1

Views

Author

Christian Barrientos, Jul 17 2024

Keywords

Comments

a(n) is the number of spanning trees of the cyclic snake formed with n copies of the cycle on 3 vertices. A cyclic snake is a connected graph whose block-cutpoint is a path and all its n blocks are isomorphic to the cycle C_m.

Examples

			For n=2 the a(2)=3 nonisomorphic spanning trees of 2C_3-snake are:
__ __ __ __, __\__ __, __\/__
		

References

  • Christian Barrientos, Graceful labelings of cyclic snakes, Ars Combin., 60 (2001), 85-96.

Crossrefs

Cf. A374722.

Programs

  • Mathematica
    A374721[n_] := 2*3^(n - 2) + 3^Floor[(n - 2)/2]; Array[A374721, 30] (* or *)
    LinearRecurrence[{3, 3, -9}, {1, 3, 7}, 30] (* Paolo Xausa, Oct 17 2024 *)

Formula

a(n) = 2*3^(n-2) + 3^floor((n-2)/2).
From Stefano Spezia, Jul 20 2024: (Start)
G.f.: x*(1 - 5*x^2)/((1 - 3*x)*(1 - 3*x^2)).
E.g.f.: (2*cosh(3*x) + 3*cosh(sqrt(3)*x) + 2*sinh(3*x) + sqrt(3)*sinh(sqrt(3)*x) - 5)/9. (End)