cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A374726 Number of gap-free Carlitz compositions of n.

Original entry on oeis.org

1, 1, 3, 2, 4, 9, 11, 11, 29, 53, 82, 129, 215, 389, 726, 1237, 2079, 3660, 6386, 11127, 19719, 34658, 60358, 105776, 185641, 324822, 569565, 999824, 1753763, 3075263, 5390839, 9452903, 16579307, 29065205, 50947822, 89330076, 156628094, 274559046, 481250343
Offset: 1

Views

Author

John Tyler Rascoe, Jul 17 2024

Keywords

Comments

These are integer compositions such that no adjacent parts are equal and their set of parts covers some interval.

Examples

			a(6) = 9 counts: (1,2,1,2), (2,1,2,1), (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1), (6).
		

Crossrefs

Programs

  • PARI
    Ca_x(s, N)={my(x='x+O('x^N), g=if(#s <1, 1, sum(i=1, #s, (Ca_x(s[^i], N) * x^(s[i])/(1+x^(s[i]))))/(1-sum(i=1, #s, (x^(s[i]))/(1+x^(s[i])))))); return(g)}
    B_x(N)={my(x='x+O('x^N), j=1, h=0); while((j*(j+1))/2 <= N, for(k=0,N, h += Ca_x([(1+k)..(j+k)], N+1)); j++); my(a = Vec(h)); vector(N, i, a[i])}
    B_x(20)

A374728 Number of n-color gap-free compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 7, 19, 45, 105, 239, 507, 1079, 2303, 4829, 10425, 23263, 53363, 127995, 318983, 816057, 2133241, 5640135, 14975051, 39772751, 105322879, 277547989, 727276225, 1894282195, 4903985955, 12621154315, 32302574959, 82248961437, 208426306113, 525884062427
Offset: 1

Views

Author

John Tyler Rascoe, Jul 17 2024

Keywords

Comments

These are integer compositions whose set of parts covers some interval and contains k colors of each part k.

Examples

			a(5) = 7 counts: (1,1,1,1,1), (1,2_a,2_b), (1,2_b,2_a), (2_a,1,2_b), (2_a,2_b,1), (2_b,1,2_a), (2_b,2_a,1).
		

Crossrefs

Programs

  • PARI
    colr(x,y)={my(r=y-x+1, v=[x..y], z = vector(r*(r+(1+(x-1)*2))/2), k=1); for(i=1,#v,for(j=1,v[i],z[k]=v[i]; k++)); return(z)}
    C_x(s,N)={my(x='x+O('x^N), g=if(#s <1,1, sum(i=1,#s, C_x(s[^i],N+1) * x^(s[i]) )/(1-sum(i=1,#s, x^(s[i]))))); return(g)}
    B_x(N)={my(x='x+O('x^N), h=0); for(u=1,N, my(j=0); while(vecsum(colr(u,u+j)) <= N, h += C_x(colr(u,u+j),N+1); j++)); my(a = Vec(h)); vector(N, i, a[i])}
    B_x(20)

A374925 Number of n-color compositions of n having at least one pair of adjacent parts that are the same color.

Original entry on oeis.org

0, 0, 1, 3, 10, 31, 91, 259, 726, 2007, 5489, 14888, 40122, 107574, 287239, 764405, 2028679, 5371858, 14198008, 37467982, 98749767, 259984452, 683865318, 1797500121, 4721662597, 12396308875, 32531025970, 85337831350, 223794544179, 586736215856, 1537941527011
Offset: 0

Views

Author

John Tyler Rascoe, Jul 24 2024

Keywords

Examples

			a(4) = 10 counts: (1,1,1,1), (1,1,2_a), (1,1,2_b), (1,2_a,1), (1,3_a), (2_a,1,1), (2_a,2_a), (2_b,1,1), (2_b,2_b), (3_a,1).
		

Crossrefs

Programs

  • PARI
    C_x(N) = {my(x='x+O('x^N), h=(sum(i=1,N,(x^(2*i))/((1-x)*(1-x+x^i)*(1-sum(j=1,N, (x^j)/(1-x+x^j))))))/(1-sum(i=1,N,(x^i)/(1-x)))); concat([0,0],Vec(h))}
    C_x(40)

Formula

G.f.: Sum_{i>0} ( x^(2*i)/((1 - x)*(1 - x + x^i)*(1 - Sum_{j>0} ((x^j)/(1 - x + x^j)))) )/( 1 - Sum_{k>0} ((x^k)/(1 - x)) ).
a(n) = A088305(n) - A242551(n).
Showing 1-3 of 3 results.