A374726
Number of gap-free Carlitz compositions of n.
Original entry on oeis.org
1, 1, 3, 2, 4, 9, 11, 11, 29, 53, 82, 129, 215, 389, 726, 1237, 2079, 3660, 6386, 11127, 19719, 34658, 60358, 105776, 185641, 324822, 569565, 999824, 1753763, 3075263, 5390839, 9452903, 16579307, 29065205, 50947822, 89330076, 156628094, 274559046, 481250343
Offset: 1
a(6) = 9 counts: (1,2,1,2), (2,1,2,1), (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1), (6).
-
Ca_x(s, N)={my(x='x+O('x^N), g=if(#s <1, 1, sum(i=1, #s, (Ca_x(s[^i], N) * x^(s[i])/(1+x^(s[i]))))/(1-sum(i=1, #s, (x^(s[i]))/(1+x^(s[i])))))); return(g)}
B_x(N)={my(x='x+O('x^N), j=1, h=0); while((j*(j+1))/2 <= N, for(k=0,N, h += Ca_x([(1+k)..(j+k)], N+1)); j++); my(a = Vec(h)); vector(N, i, a[i])}
B_x(20)
A374727
Number of n-color complete compositions of n.
Original entry on oeis.org
1, 1, 1, 1, 7, 13, 45, 91, 233, 477, 1079, 2205, 4709, 10299, 22393, 52005, 125055, 310373, 799677, 2096699, 5556681, 14806685, 39417431, 104570549, 276027337, 724183555, 1887993925, 4891368373, 12595644523, 32252683453, 82146468813, 208225916203, 525472131209
Offset: 1
a(6) = 13 counts: (1,1,1,1,1,1) and the 12 permutations of parts 1, 1, 2_a, and 2_b.
-
colr(x,y)={my(r=y-x+1, v=[x..y], z = vector(r*(r+(1+(x-1)*2))/2), k=1); for(i=1,#v,for(j=1,v[i],z[k]=v[i]; k++)); return(z)}
C_x(s,N)={my(x='x+O('x^N), g=if(#s <1,1, sum(i=1,#s, C_x(s[^i],N) * x^(s[i]) )/(1-sum(i=1,#s, x^(s[i]))))); return(g)}
B_x(N)={my(x='x+O('x^N), j=1, h=0, s=colr(1,j)); while(vecsum(s) <= N, h += C_x(s,N+1); j++;s=colr(1,j)); my(a = Vec(h)); vector(N, i, a[i])}
B_x(25)
A374925
Number of n-color compositions of n having at least one pair of adjacent parts that are the same color.
Original entry on oeis.org
0, 0, 1, 3, 10, 31, 91, 259, 726, 2007, 5489, 14888, 40122, 107574, 287239, 764405, 2028679, 5371858, 14198008, 37467982, 98749767, 259984452, 683865318, 1797500121, 4721662597, 12396308875, 32531025970, 85337831350, 223794544179, 586736215856, 1537941527011
Offset: 0
a(4) = 10 counts: (1,1,1,1), (1,1,2_a), (1,1,2_b), (1,2_a,1), (1,3_a), (2_a,1,1), (2_a,2_a), (2_b,1,1), (2_b,2_b), (3_a,1).
-
C_x(N) = {my(x='x+O('x^N), h=(sum(i=1,N,(x^(2*i))/((1-x)*(1-x+x^i)*(1-sum(j=1,N, (x^j)/(1-x+x^j))))))/(1-sum(i=1,N,(x^i)/(1-x)))); concat([0,0],Vec(h))}
C_x(40)
Showing 1-3 of 3 results.
Comments